LETTER
CH3–C–Si), 63.6, 64.0 (CH2), 64.6, 66.8 (CH2), 77.5, 78.8
Observation of a 1,5-Silyl-Migration on Fructose
2387
CH2-6), 3.92–3.95 (1 H, m, CH-5), 4.12–4.23 (1 H, m, CH-
4), 4.28 (1 H, d, J = 7.8 Hz, CH-3), 4.56 (6 H, s, 3 × CH2–
Ph), 5.50 (1 H, d, J = 5.6 Hz, OH–CH-4), 7.12–7.50 (30 H,
m, arom. H). 13C NMR (100.4 MHz, DMSO-d6, 60 °C, the
only fructose derivative found here displaying only one
conformation): d = 63.7 (CH2–Ph), 66.2 (CH2-1), 70.3 (CH2-
6), 71.7 (CH2–Ph), 72.4 (CH2–Ph), 74.7 (CH-4), 80.0 (CH-
5), 85.0 (CH-3), 103.8 (C-2), 126.5, 126.9, 126.95, 127.0,
127.1, 127.2, 127.25, 127.3, 127.4, 127.5, 127.7, 127.8,
127.9, 128.0, 128.05, 128.1, 128.3, 128.4 (30 arom. CH),
138.5, 138.9, 143.5, 147.8 (6 arom. C). The assignment of
the 1H- and 13C NMR spectra was based on COSY, HSQC
and HMBC spectra (unsuccessful for CPh3 though). NOESY
cross peaks between CH-3 and both CH2-1 proved that the b-
anomer was present. MS (ESI): m/z (%) = 715 (19) [M +
Na]+, 243 (26) [Ph3C]+, 186 (100).
(CH), 78.9, 79.0 (CH), 85.7, 87.8 (CH), 104.2, 106.3 (C-2).
MS (ESI): m/z (%) = 431 (100) [M + Na]+. Crystal data:
crystal derived from toluene, C18H40O6Si2, M = 408.68,
trigonal, P31 (no. 144), a = 17.0933 (13) Å, c = 15.5690 (16)
Å, V = 3939.5 (6) Å3, Z = 6 (2 independent molecules),
Dc = 1.034 g cm–3, m(Cu-Ka) = 1.433 mm–1, T = 293 K,
colorless needles, Oxford Diffraction Xcalibur PX Ultra
diffractometer; 8947 independent measured reflections, F2
refinement, R1 = 0.094, wR2 = 0.252, 4167 independent
observed reflections [|Fo| > 4s(|Fo|), 2qmax = 143°], 592
parameters. The absolute structure of 2a was determined by
a combination of R-factor tests [R1+ = 0.0935, R1– = 0.0960]
and by use of the Flack parameter [x+ = +0.00(8)]. CCDC
270727.
(3) Analytical data of 3b: [a]D22 –12.9 (c 0.500, MeOH);
Rf = 0.21 (SiO2, hexane–Et2O 19:1). 1H NMR (400 MHz,
CDCl3): d = –0.10–0.00 (12 H, m, CH3–Si), 0.77–0.85 (18 H,
m, CH3–C–Si), 3.46–4.80 (13 H, m, 5 CH2, 3 CH), 7.12–7.31
(15 arom. H). 13C NMR (100.4 MHz, CDCl3, two
(6) Analytical data of 2b. Acid quenching or warming to r.t. lead
to an exothermic reaction resulting in complex mixtures.
Isolation of 2b – the main product whereas no 2a was found
– was only successful when the cold mixture was subjected
to column chromatography very quickly: [a]D22 ca. 0 (c 1.05,
MeOH); Rf = 0.13 (SiO2, EtOAc–hexane 1:2). 1H NMR (400
MHz, CDCl3): d = 0.03–0.19 (12 H, m, CH3–Si), 0.86–0.95
(18 H, m, CH3–C–Si), 3.49–4.25 (10 H, m, 2 CH2, 3 CH, 3
OH). 13C NMR (100.4 MHz, CDCl3, two conformations):
d = –4.9, –4.8, –4.6, –4.5, –3.6 (4 C, CH3–Si), 17.8, 17.9,
18.3, 18.4 (2 C, C–Si), 25.6, 25.6, 25.7, 25.8 (6 C,
conformations): d = –5.31, –5.27, –5.24, –5.18, –4.92, –4.21
(4 C, CH3–Si), 17.9, 18.3, 18.4 (2 C, C–Si), 25.7, 25.8,
25.83, 25.9, 26.0 (6 C, CH3–C–Si), 63.0, 64.7, 64.8, 66.9,
67.6, 69.4, 72.2, 72.6, 72.9, 73.4 (5 C, CH2), 76.5, 80.1, 80.2,
82.8, 84.5, 85.5 (3 C, CH), 104.7, 104.8 (C-2), 127.1, 127.2,
127.5, 127.52, 127.6, 127.67, 127.7, 127.8, 127.85, 127.9,
128.0, 128.1, 128.2, 128.23, 128.3, 128.4, 128.5 (15 arom.
CH), 138.3, 138.4, 138.43, 138.5, 138.6 (3 arom. C). MS
(ESI): m/z (%) = 701 (100) [M + Na]+, 517 (35).
CH3–C–Si), 63.2, 63.4 (CH2), 64.5, 65.7 (CH2), 77.2, 77.6
(CH), 79.1, 79.2 (CH), 84.4, 86.9 (CH), 103.3, 107.2 (2-C).
MS (ESI): m/z (%) = 431 (100) [M + Na]+.
(4) Analytical data of 4b: [a]D22 –17.6 (c 1.07, MeOH);
Rf = 0.21 (SiO2, EtOAc–hexane 3:2). 1H NMR (400 MHz,
CDCl3): d = 2.38–4.84 (15 H, m, 5 CH2, 3 CH, 2 OH), 7.18–
7.39 (15 arom. H). 13C NMR (100.4 MHz, CDCl3, two
conformations): d = 63.5, 64.4, 64.7, 64.9, 65.2, 70.9, 72.8,
72.9, 73.0, 73.6 (5 C, CH2), 76.5, 79.6, 80.5, 82.7, 84.8, 84.9
(3 C, CH), 104.8, 105.1 (C-2), 127.4, 127.45, 127.5, 127.6,
127.7, 127.8, 127.82, 127.86, 127.9, 128.0, 128.1, 128.16,
128.2, 128.3, 128.49, 128.50, 128.53, 128.7 (15 arom. CH),
137.8, 137.9, 138.0, 138.3, 138.7. 138.9 (3 arom. C). MS
(ESI): m/z (%) = 473 (20) [M + Na]+, 186 (100).
(7) Oral communication by Henry Rzepa.
(8) Molecular mechanics (MM2) of Chem3D Ultra 9.0: for 2a
the X-ray data of the conformation yielding the lower energy
were used whereas for 2b several conformations were tried
and again the one resulting in the lowest energy was chosen.
(9) (a) Yoon, S. J. Korean Chem. Soc. 2002, 46, 590. (b) Arias-
Pérez, M. S.; López, M. S.; Santos, M. J. J. Chem. Soc.,
Perkin Trans. 2 2002, 1549. (c) Li, Y.; Horton, D.;
Barberousse, V.; Samreth, S.; Bellamy, F. Carbohydr. Res.
1999, 316, 104. (d) Akai, S.; Nishino, N.; Iwata, Y.;
Hiyama, J.; Kawashima, E.; Sato, K.; Ishido, Y. Tetrahedron
Lett. 1998, 39, 5583.
(5) Analytical data of 1b: [a]D22 –3.9 (c 1.07, MeOH); Rf = 0.17
(SiO2, Et2O–hexane 1:1). 1H NMR (400 MHz, DMSO-d6, 60
°C): d = 3.03, 3.26 (2 H, 2 d, J = 9.5 Hz, CH2-1), 3.62 (1 H,
dd, J = 11.1, 6.0 Hz, CH2-6), 3.77 (1 H, dd, J = 11.1, 2.4 Hz,
(10) (a) Brook, A. G. J. Am. Chem. Soc. 1958, 80, 1886.
(b) Brook, A. G. Acc. Chem. Res. 1974, 7, 77.
Synlett 2005, No. 15, 2385–2387 © Thieme Stuttgart · New York