Rh(I)+/H8-BINAP8-catalyzed cross-cyclotrimerization of ter-
minal alkynes with dialkyl acetylenedicarboxylates.9 In this
paper, we describe Rh(I)+/modified-BINAP-catalyzed chemo-,
regio-, and enantioselective [2 + 2 + 2] cycloaddition of
alkynes with isocyanates.
(trimethylsilyl)acetylene (1c) furnished isomer 5 as a sole
product (entries 5 and 6).
Next, the cycloaddition of both terminal and internal R,ω-
diynes with isocyanates was investigated using 5% [Rh(cod)2]-
BF4/H8-BINAP at room temperature (Table 2). The reaction
We first investigated the cycloaddition of terminal alkynes
with isocyanates. After screening various rhodium(I) com-
plexes, we found that [Rh(cod)2]BF4/H8-BINAP catalyzed
this reaction at room temperature. Regioselectivity is highly
dependent on the alkynes used (Table 1). Although the
Table 2. Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition of
Symmetrical R,ω-Diynes with Isocyanatesa
Table 1. Rhodium-Catalyzed Regioselective [2 + 2 + 2]
Cycloaddition of Terminal Monoynes with Isocyanates
entry
7
X
R1
2
R2
8
yieldb (%)
1
2
3
4
5
6
7
8c
9
7a C(CO2Me)2
7a C(CO2Me)2
7a C(CO2Me)2
7b C(CO2Me)2
7b C(CO2Me)2
7c NTs
7c NTs
7d CH2
7e CH2CH2
Me 2a Bn
Me 2b n-Bu 8ab
Me 2d Ph
8aa
99
90
87
84
81
93
80
64
85
98
65
48
8ad
8ba
8bc
8ca
H
H
2a Bn
2c Cy
Me 2a Bn
Me 2b n-Bu 8cb
H
2a Bn
8da
8ea
8fa
8ga
8ha
Me 2a Bn
yielda (%)
10
11
12
7f
CH2CH2
Et
H
H
2a Bn
2a Bn
2a Bn
entry
1
R1
2
R2
3
4
5
6
7g CH2CH2
7h CH2CH2CH2
1
2
3
4
5
6
1a 1-cyclohexenyl 2a Bn
47b
1b
1b
30
31
0
0
0
0
0
0
0
0
0
1a 1-cyclohexenyl 2b n-Bu 47b
0
<5
<5
65
a Isocyanates (1.1 equiv: R1 ) Me or Et, 2.0 equiv: R1 ) H) were
used. b Isolated yield. c BINAP was used as ligand.
1b n-C10H21
1b n-C10H21
1c Me3Si
2a Bn
2c Cy
2b n-Bu
2c Cy
31
31
0
1c Me3Si
0
48
of malonate-derived 1,6-diynes and diynes containing an
internal amino group with a variety of isocyanates afforded
the desired 2-pyridones in good yield (entries 1-7). 1,6-
Heptadiyne, having no tertiary center on the tether chain,
also reacted with an isocyanate to afford the expected
2-pyridone (entry 8). The formation of a six- or seven-
membered ring was also possible (entries 9-12). In general,
the reactions of internal R,ω-diynes proceeded in higher yield
than those of terminal R,ω-diynes, due to the lower reactivity
toward homo-cycloaddition.
The [2 + 2 + 2] cycloaddition of unsymmetrical R,ω-
diynes, bearing an ortho-substituted phenyl at one terminal
position, with alkyl isocyanates would install axial chirality
during the formation of pyridone rings.10 As shown in Table
3, the reaction of unsymmetrical 1,6-diynes using [Rh(cod)2]-
BF4/(R)-DTBM-Segphos11 furnished a sterically demanding
and axially chiral regioisomer as a sole product.12 The
reaction of 2-chlorophenyl-substituted 1,6-heptadiyne 9a with
various alkyl isocyanates furnished axially chiral 2-pyridones
a Isolated yield. b Isolated as a mixture of 3 and 4.
reaction of conjugated alkyne 1a furnished isomer 3 as a
major product (entries 1 and 2), the reaction of nonconjugated
alkyne 1b furnished isomers 3 and 4 as major products
(entries 3 and 4). On the other hand, the reaction of
(6) For rhodium-catalyzed cyclotrimerization of alkynes, see: (a) Mu¨ller,
E. Synthesis 1974, 761-774. (b) Grigg, R.; Scott, R.; Stevenson, P.
Tetrahedron Lett. 1982, 23, 2691-2692. (c) Grigg, R.; Scott, R.; Stevenson,
P. J. Chem. Soc., Perkin Trans. 1 1988, 1357-1364. (d) Magnus, P.; Witty,
D.; Stamford, A. Tetrahedron Lett. 1993, 34, 23-26. (e) Baidossi, W.;
Goren, N.; Blum, J. J. Mol. Catal. 1993, 85, 153-162. (f) Doyle, M. P.;
Shanklin, M. S. Organometallics 1994, 13, 1081-1088. (g) McDonald, F.
E.; Zhu, H. Y. H.; Holmquist, C. R. J. Am. Chem. Soc. 1995, 117, 6605-
6606. (h) Kotha, S.; Brahmachary, E. Tetrahedron Lett. 1997, 38, 3561-
3564. (i) Witulski, B.; Stengel, T. Angew. Chem., Int. Ed. 1999, 38, 2426-
2430. (j) Grigg, R.; Sridharan, V.; Wang, J.; Xu, J. Tetrahedron 2000, 56,
8967-8976. (k) Witulski, B.; Stengel, T.; Fernandez-Hernandez, J. M.
Chem. Commun. 2000, 1965-1966. (l) McDonald, F. E.; Smolentsev, V.
Org. Lett. 2002, 4, 745-748. (m) Witulski, B.; Zimmermann, A. Synlett
2002, 1855-1859. (n) Witulski, B.; Alayrac, C. Angew. Chem., Int. Ed.
2002, 41, 3281-3284. (o) Nishiyama, H.; Niwa, E.; Inoue, T.; Ishima, Y.;
Aoki, K. Organometallics 2002, 21, 2572-2574. (p) Yan, H.; Beatty, A.
M.; Fehlner, T. P. Organometallics 2002, 21, 5029-5037. (q) Kinoshita,
H.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 2003, 125, 7784-7785.
(7) Flynn, S. T.; Hasso-Henderson, S. E.; Parkins, A. W. J. Mol. Catal.
1985, 32, 101-105.
(10) For enantioselective synthesis of axially chiral compounds through
[2 + 2 + 2] cycloaddition, see: (a) Gutnov, A.; Heller, B.; Fischer, C.;
Drexler, H.-J.; Spannenberg, A.; Sundermann, B.; Sundermann, C. Angew.
Chem., Int. Ed. 2004, 43, 3795-3797. (b) Shibata, T.; Fujimoto, T.; Yokota,
K.; Takagi, K. J. Am. Chem. Soc. 2004, 126, 8382-8383. (c) Tanaka, K.;
Nishida. G.; Wada, A.; Noguchi, K. Angew. Chem., Int. Ed. 2004, 43, 6510-
6512. (d) Tanaka, K.; Nishida, G.; Ogino, M.; Hirano, M.; Noguchi, K.
Org. Lett. 2005, 7, 3119-3121.
(8) Zhang, X.; Mashima, K.; Koyano, K.; Sayo, N.; Kumobayashi, H.;
Akutagawa, S.; Takaya, H. Tetrahedron. Lett. 1991, 32, 7283-7286.
(9) (a) Tanaka, K.; Shirasaka, K. Org. Lett. 2003, 5, 4697-4699. (b)
Tanaka, K.; Toyoda, K.; Wada, A.; Shirasaka, K.; Hirano, M. Chem. Eur.
J. 2005, 11, 1145-1156.
(11) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura,
T.; Kumobayashi, H. AdV. Synth. Catal. 2001, 343, 264-267.
4738
Org. Lett., Vol. 7, No. 21, 2005