H. Tian et al.
6H), 7.38 (dd, J = 8.6 Hz, 4H), 7.25 (d, J = 16.5 Hz, 1H), 7.14(d, J =
16.5 Hz, 1H), 5.18 ppm (s, 4H); MS (70 eV, ESI): m/z (%): 1099 (65)
[M+], 1122 (100) [M++Na]; elemental analysis: calcd (%) for
C52H32N5Na3O13S3: C 56.78, H 2.93, N 6.37; found: C 56.76, H 2.92, N
6.39.
M. J. OꢁConnell, P. N. Taylor, J. S. Wilson, F. Cacialli, H. L. Ander-
son, Chem. Eur. J. 2003, 9, 6167–6176.
[6] a) I. Willner, V. Pardo-Yissar, E. Katz, K. T. Ranjit, J. Electroanal.
Chem. 2001, 497, 172–177; b) M. Cavallini, F. Biscarni, S. León, F.
Zerbetto, G. Bottari, D. A. Leigh, Science 2003, 299, 531.
[7] a) M. C. Jimenez-Molero, C. Dietrich-Buchecker, J.-P. Sauvage,
Chem. Eur. J. 2002, 8, 1456–1466; b) R. A. Bissel, E. Córdova, A. E.
Kaifer, J. F. Stoddart, Nature 1994, 369, 133–137.
[8] a) H. Murakami, A. Kawabuchi, K. Kotoo, M. Kunitake, N. Naka-
shima, J. Am. Chem. Soc. 1997, 119, 7605–7606; b) C. A. Stanier,
S. J. Alderman, T. D. W. Claridge, H. L. Anderson, Angew. Chem.
2002, 114, 1847–1850; Angew. Chem. Int. Ed. 2002, 41, 1769–1772.
[9] a) A. M. Brouwer, C. Frochot, F. G. Gatti, D. A. Leigh, L. Mottier,
F. Paolucci, S. Roffa, G. W. H. Wurpel, Science 2001, 291, 2124–
2128; b) G. W. H. Wurpel, A. M. Brouwer, I. H. M. van Stokkum, A.
Farran, D. A. Leigh, J. Am. Chem. Soc. 2001, 123, 11327–11328;
c) A. Altieri, G. Bottari, F. Dehez, D. A. Leigh, J. K. Y. Wong, F.
Zerbetto, Angew. Chem. 2003, 115, 2398–2402; Angew. Chem. Int.
Ed. 2003, 42, 2296–2300.
[10] a) N. Armaroli, V. Balzani, J. P. Collin, P. GaviÇa, J.-P. Sauvage, B.
Ventura, J. Am. Chem. Soc. 1999, 121, 4397–4408; b) P. R. Ashton,
R. Ballardini, V. Balzani, A. Credi, K. R. Dress, E. Ishow, C. J. Kle-
verlaan, O. Kocian, J. A. Preece, N. Spencer, J. F. Stoddart, M. Ven-
turi, S. Wenger, Chem. Eur. J. 2000, 6, 3558–3574; c) W. Abraham,
L. Grubert, U. W. Grummt, K. Buck, Chem. Eur. J. 2004, 10, 3562–
3568.
NNAS-2CD: Compounds 1-a-CD (0.14g, 0.080 mmol) and 2-a-CD
(0.12 g, 0.078 mmol) and Pd(OAc)2 (3.8 mg, 0.017 mmol) were dissolved
in aqueous Ar-saturated sodium carbonate solution (20 mL, 0.2m). The
mixture was stirred at 858C for 24h, then cooled and acidified with
acetic acid. After concentration in vacuo, the resulting dark solid was pu-
rified by column chromatography (silica gel; upper layer = acetic acid/n-
butanol/water, 1.5:2:5) to give pure NNAS-2CD (43 mg, 18%) as a
yellow powder. M.p. >2508C; 1H NMR (500 MHz, [D6]DMSO, 258C,
TMS): d = 8.95 (s, 1H), 8.69–8.65 (m, 3H), 8.62 (s, 1H), 8.58 (d, J =
8.1 Hz, 1H), 8.50 (d, J = 7.0 Hz, 1H), 8.02 (s, 2H), 7.92 (d, J = 8.1 Hz,
2H), 7.87 (dd, J = 7.0 Hz, J = 8.2 Hz, 1H), 7.83 (d, J = 7.6 Hz, 2H),
7.69 (d, J = 8.4Hz, 2H), 7.51 (m, 6H), 7.38 (dd, J = 8.6 Hz, 4H), 7.25
(d, J = 16.0 Hz, 1H), 7.14(d, J = 16.0 Hz, 1H), 5.52 (d, J = 6.6 Hz,
12H), 5.44 (s, 12H), 5.25 (s, 4H), 4.79 (s, 12H), 4.49 (s, 12H), 3.76–3.54
(m, 48H), 3.4 (m, 12H), 3.25 ppm (m, 12H); MALDI-TOF: m/z (%):
3067.7 (100) [M++Na], 3045.7 (60) [M++1]; elemental analysis: calcd
(%) for C124H152N5Na3O73S3·12H2O: C 45.66, H 5.44, N 2.15; found: C
45.68, H 5.46, N 2.17.
[11] a) J. D. Cꢂrdenas, A. Livoreil, W. Kaim, J.-P. Sauvage, J. Am. Chem.
Soc. 1996, 118, 11980–11981; b) Y. Liu, A. H. Flood, J. F. Stoddart,
J. Am. Chem. Soc. 2004, 126, 9150–9151; c) O. Lukin, A. Godt, F.
Vçgtle, Chem. Eur. J. 2004, 10, 1878–1883; d) O. Lukin, T. Kubota,
Y. Okamoto, A. Kaufmann, F. Vçgtle, Chem. Eur. J. 2004, 10, 2804–
2810; e) E. Katz, L. Sheeney-Haj-Ichia, I. Willner, Angew. Chem.
2004, 116, 3354–3362; Angew. Chem. Int. Ed. 2004, 43, 3292–3300.
[12] a) A. Mirzoian, A. E. Kaifer, Chem. Eur. J. 1997, 3, 1052–1057;
b) A. Mirzoian, A. E. Kaifer, Chem. Commun. 1999, 1603–1604.
[13] G. Bottari, F. Dehez, D. A. Leigh, P. J. Nash, E. M. PØrez, J. K. Y.
Wong, F. Zerbetto, Angew. Chem. 2003, 115, 6066–6069; Angew.
Chem. Int. Ed. 2003, 42, 5886–5889.
[14] R. Breslow, S. D. Dong, Chem. Rev. 1998, 98, 1997–2012.
[15] a) B. Carrozzini, G. L. Cascarano, C. J. Easton, A. J. Edwards, A. D.
Rae, Chem. Eur. J. 2003, 9, 5971–5977; b) H. Onagi, C. J. Blake,
C. J. Easton, S. F. Lincoln, Chem. Eur. J. 2003, 9, 5978–5988.
[16] W. S. Jeon, A. Y. Ziganshina, J. W. Lee, Y. H. Ko, J.-K. Kang, C.
Lee, K. Kim, Angew. Chem. 2003, 115, 4231–4234; Angew. Chem.
Int. Ed. 2003, 42, 4097–4100.
[17] A. Livoreil, C. O. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem.
Soc. 1994, 116, 9399–9400.
[18] a) Q.-C. Wang, D.-H. Qu, J. Ren, K.-C. Chen, H. Tian, Angew.
Chem. 2004, 116, 2715–2719; Angew. Chem. Int. Ed. 2004, 43, 2661–
2665; b) D.-H. Qu, Q.-C. Wang, J. Ren, H. Tian, Org. Lett. 2004, 6,
2085–2088.
[19] a) E. M. PØrez, D. T. F. Dryden, D. A. Leigh, G. Teobaldi, F. Zerbet-
to, J. Am. Chem. Soc. 2004, 126, 12210–12211; b) S. I. Jun, J. W.
Lee, S. Sakamoto, K. Yamaguchi, K. Kim, Tetrahedron Lett. 2000,
41, 471–475; c) V. Balzani, A. Credi, F. Marchioni, J. F. Stoddart,
Chem. Commun. 2001, 1860–1861.
Acknowledgements
This work was supported by the NSFC of China (20273020 and
90401026), and the Education Committee and the Scientific Committee
of Shanghai. We thank Prof. Yu Liu (NanKai University, China) for his
relevant advice on the synthesis.
[1] a) J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives,
Wiley-VCH, Weinheim, 1995; b) V. Balzani, M. Venturi, A. Credi,
Molecular Devices and Machines, Wiley-VCH, Weinheim, 2003;
c) V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem.
2000, 112, 3484–3530; Angew. Chem. Int. Ed. 2000, 39, 3348–3391;
d) J.-P. Collin, C. Dietrich-Buchecker, P. Gavina, M. C. Jimenez-
Molero, J.-P. Sauvage, Acc. Chem. Res. 2001, 34, 477–487; e) C. A.
Schalley, K. Beizai, F. Vçgtle, Acc. Chem. Res. 2001, 34, 465–476.
[2] a) A. Harada, Acc. Chem. Res. 2001, 34, 456–464; b) S. A. Nepogo-
diev, J. F. Stoddart, Chem. Rev. 1998, 98, 1959–1976.
[3] a) V. Balzani, A. Credi, M. Venturi, ChemPhysChem 2003, 3, 4 9–
59; b) V. Balzani, Photochem. Photobiol. Sci. 2003, 2, 459–476;
c) F. M. Raymo, Adv. Mater. 2002, 14, 401–414; d) C. P. Collier,
E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J.
Kuekes, R. S. Williams, J. R. Heath, Science 1999, 285, 391–394;
e) C. P. Collier, M. Belohradsky, F. M. Raymo, J. F. Stoddart, J. R.
Heath, J. Am. Chem. Soc. 2000, 122, 5831–5840; f) M. Asakawa,
P. R. Ashton, V. Balzani, A. Credi, G. Mattersteig, O. A. Matthews,
M. Montalti, N. Spencer, J. F. Stoddart, M. Venturi, Chem. Eur. J.
1997, 3, 1992–1996.
[20] a) Y. Liu, Y.-L. Zhao, H.-Y. Zhang, H.-B. Song, Angew. Chem. 2003,
115, 3382–3385; Angew. Chem. Int. Ed. 2003, 42, 3260–3263; b) Y.
Liu, L. Li, Z. Fan, H.-Y. Zhang, X. Wu, S.-X. Liu, X.-D. Guan,
Nano Lett. 2002, 2, 257–261; c) Y. Liu, L. Li, H.-Y. Zhang, Y.-L.
Zhao, X. Wu, Macromolecules 2002, 35, 9934–9938.
[21] a) M. R. Craig, T. D. W. Claridge, M. G. Hutchings, H. L Anderson,
Chem. Commun. 1999, 1537–1538; b) J. Terao, A. Tang, J. J. Mi-
chels, A. Krivokapic, H. L. Anderson, Chem. Commun. 2004, 56–
57.
[22] a) Y. Kawaguchi, A. Harada, Org. Lett. 2000, 2, 1353–1356; b) M.
Okada, A. Harada, Org. Lett. 2004, 6, 361–364; c) H. Shigekawa, K.
Miyake, J. Sumaoka, A. Harada, M. Komiyama, J. Am. Chem. Soc.
2000, 122, 5411–5412.
[4] a) B. L. Feringa, Acc. Chem. Res. 2001, 34, 504–513; b) B. L. Ferin-
ga, Molecular Switches, Wiley-VCH, Weinheim, 2001; c) M. Asaka-
wa, M. Higuchi, G. Mattersteig, T. Nakamura, A. R. Pease, F. M.
Raymo, T. Shimizu, J. F. Stoddart, Adv. Mater. 2000, 12, 1099–1102;
d) G. Bottari, D. A. Leigh, E. PØrez, J. Am. Chem. Soc. 2003, 125,
13360–13361.
[5] a) P. N. Taylor, M. J. OꢁConnell, L. A. McNeill, M. J. Hall, R. T.
Aplin, H. L. Anderson, Angew. Chem. 2000, 112, 3598–3602;
Angew. Chem. Int. Ed. 2000, 39, 3456–3460; b) F. Cacialli, J. S.
Wilson, J. J. Michels, C. Daniel, C. Silva, R. H. Friend, N. Severin, P.
Samorì, J. P. Rabe, M. J. OꢁConnell, P. N. Taylor, H. L. Anderson,
Nat. Mater. 2002, 1, 160–164; c) P. N. Taylor, A. J. Hagan, H. L. An-
derson, Org. Biomol. Chem. 2003, 1, 3851–3856; d) J. J. Michels,
5936
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2005, 11, 5929 – 5937