Angewandte
Chemie
3
1.20 (d, JH-H = 6.7 Hz, 6H, CH(CH3)2), 1.37 (d, 3JH-H = 6.9 Hz, 6H,
CH(CH3)2), 1.44 (d, 3JH-H = 6.7 Hz, 6H, CH(CH3)2), 1.77 (s, 6H, CH3),
2.08 (s, 1H, SH), 3.03 (sept, 3JH-H = 6.9 Hz, 2H, CH(CH3)2), 3.49 (sept,
3JH-H = 6.7 Hz, 2H, CH(CH3)2), 5.20 (s, 1H, g-CH), 5.36 (s, 10H, Cp
À
H), 7.04–7.20 ppm (m, 6H, m-, p-Ar H); 13C NMR (125.77 MHz,
À
CDCl3, 258C, TMS): d = 23.6, 24.2, 24.4, 24.7 (CH(CH3)2), 26.1, 27.5
(CH(CH3)2), 28.7 (CH3), 97.5 (g-CH), 113.9 (C of Cp) 124.0, 125.2,
=
127.3, 140.9, 142.9, 145.6 (i-, o-, m-, p-C of Ar), 170.6 ppm (C N); IR
(KBr pellet): n˜ = 3551 br (OH), 2574 vw (SH) cmÀ1; EI MS (70 eV):
m/z (%): 623 (10, [MÀCp]+), 605 (50, [MÀCpÀH2O]+); elemental
analysis calcd for C39H53AlN2O2STi (688.78 gmolÀ1): C 68.0, H 7.8, N
4.1; found: C 67.5, H 8.0, N 4.2%.
4: The synthesis of 4 was similar to that of 3. Compound 4 was
obtained from the reaction of H2O (25 mL, 1.37 mmol) with 2 (0.50 g,
0.69 mmol) as a pale yellow powder. Yield 0.31 g (62%); m.p.: 2358C
Figure 1. XP plots at the 50% probability level of 3 (a) and 4 (b; the
presence of the reaction intermediate that contains an SH group on
the aluminum atom, the proton of which could not be localized, is
obvious). Hydrogen atoms except those of the SH and OH groups and
the H(3A) protons are omitted for clarity. Selected bond lengths []
and angles [8]: 3: Al(1)-N(1) 1.897(2), Al(1)-N(2) 1.901(2), Al(1)-O(1)
1.726(2), Al(1)-O(2) 1.719(2), O(1)-H(1) 0.85(2), Ti(1)-O(2) 1.820(2),
Ti(1)-S(1) 2.482(1), S(1)-H(2) 1.25(3), Ti(1)-XCp1 2.107(3), Ti(1)-XCp2
2.098(3); N(1)-Al(1)-N(2) 95.7(1), O(1)-Al(1)-O(2) 114.0(1), Al(1)-
O(1)-H(1) 119(3), Al(1)-O(2)-Ti(1) 148.9(1), O(2)-Ti(1)-S(1) 97.3(1),
Ti(1)-S(1)-H(2) 100(2), XCp1-Ti(1)-XCp2 128.6(2). 4: Al(1)-N(1) 1.895(2),
Al(1)-N(2) 1.898(2), Al(1)-O(1) 1.720(6), Al(1)-S(2) 2.08(1), Al(1)-O(2)
1.713(2), O(1)-H(1) 0.85(2), Zr(1)-O(1) 1.939(2), Zr(1)-S(1) 2.573(1),
S(1)-H(2) 1.19(3), Zr(1)-XCp1 2.237(3), Zr(1)-XCp2 2.240(3); N(1)-Al(1)-
N(2) 96.1(1), O(1)-Al(1)-O(2) 114.7(2), O(2)-Al(1)-S(2) 112.2(4), Al(1)-
O(1)-H(1) 122(3), Zr(1)-S(1)-H(1) 100(2), Al(1)-O(2)-Zr(1) 147.2(1),
O(2)-Zr(1)-S(1) 98.7(1), XCp1-Zr(1)-XCp2 128.0(2).
(decomp); 1H NMR (500.13 MHz, CDCl3, 258C, TMS): d = 0.36 (s,
3
1H, OH), 1.11 (d, 3JH-H = 6.8 Hz, 6H, CH(CH3)2), 1.21 (d, JH-H
=
6.8 Hz, 6H, CH(CH3)2), 1.38 (d, 3JH-H = 6.8 Hz, 6H, CH(CH3)2), 1.39
(d, 3JH-H = 6.8 Hz, 6H, CH(CH3)2), 1.65 (s, 1H, SH), 1.77 (s, 6H, CH3),
3
3
3.04 (sept, JH-H = 6.8 Hz, 2H, CH(CH3)2), 3.50 (sept, JH-H = 6.8 Hz,
2H, CH(CH3)2), 5.20 (s, 1H, g-CH), 5.46 (s, 10H, Cp-H), 7.04–
7.20 ppm (m, 6H, m-, p- Ar-H); 13C NMR (125.77 MHz, CDCl3, 258C,
TMS): d = 23.5, 24.4, 24.5, 24.6 (CH(CH3)2), 27.5, 28.6 (CH(CH3)2),
28.7 (CH3), 97.4 (g-CH), 111.8 (C of Cp) 124.0, 125.1, 127.3, 140.6,
=
143.2, 145.5 (i-, o-, m-, p- C of Ar), 170.6 ppm (C N); IR (KBr pellet):
n˜ = 3560 br (OH), 2562 vw (SH) cmÀ1; EI-MS (70 eV): m/z (%): 665
(5, [MÀCp]+), 647 (50, [MÀCpÀH2O]+); elemental analysis calcd for
C39H53AlN2O2SZr (732.12 g·molÀ1): C 64.0, H 7.3, N 3.8; found: C
63.5, H 7.4, N 3.9%.
Received: May 2, 2005
Published online: August 17, 2005
[LAl(OH)2], [{LAl(OH)}2O], and [(m-O)[LAl(m-O)]2-
(MeAl)] (108.3–115.38);[2,9] the Al-O-M angles are 148.98
Keywords: aluminum · hydroxides · sulfides · titanium ·
zirconium
.
À
À
for 3 and 147.28 for 4. The Ti O (1.820 ) and Ti S (2.482 )
bond lengths and the O-Ti-S angle (97.38) are similar to those
À
reported for other [Cp2TiOS] fragments: Ti O 1.845–1.872 ;
[1] V. Jancik, H. W. Roesky, D. Neculai, A. M. Neculai, R. Herbst-
Irmer, Angew. Chem. 2004, 116, 6318 – 6322; Angew. Chem. Int.
Ed. 2004, 43, 6192 – 6196.
[2] G. Bai, H. W. Roesky, J. Li, M. Noltemeyer, H.-G. Schmidt,
Angew. Chem. 2003, 115, 5660 – 5664; Angew. Chem. Int. Ed.
2003, 42, 5502 – 5506.
[3] a) C. Duboc-Toia, S. MØnage, J.-M. Vincent, M. T. Averbuch-
Pouchot, M. Fontecave, Inorg. Chem. 1997, 36, 6148 – 6149; b) J.
Beckmann, K. Jurkschat, M. Schurmann, Eur. J. Inorg. Chem.
2000, 939 – 941; c) Y. Zhang, F. Cervantes-Lee, K. H. Pannell,
Organometallics 2003, 22, 510 – 515; d) S. Abram, C. Maichle-
Mossmer, U. Abram, Polyhedron 1998, 17, 131 – 143; e) F. A.
Cotton, E. V. Dikarev, M. A. Petrukhina, Inorg. Chim. Acta
2002, 334, 67 – 70; f) H. Masuda, T. Taga, K. Osaki, H. Sugimoto,
M. Mori, H. Ogoshi, J. Am. Chem. Soc. 1981, 103, 2199 – 2203;
g) M. A. Edelman, P. B. Hitchcock, M. F. Lappert, J. Chem. Soc.
Chem. Commun. 1990, 1116 – 1118; h) P. Knopp, K. Wieghardt,
B. Nuber, J. Weiss, W. S. Sheldrick, Inorg. Chem. 1990, 29, 363 –
371; i) G. Jany, R. Fawzi, M. Steimann, B. Rieger, Organo-
metallics 1997, 16, 544 – 550.
Ti S 2.314–2.467 ; O-Ti-S 87.7–97.98.[11] Furthermore, in the
À
À
À
zirconium derivative the Zr O (1.939 ) and Zr S (2.573 )
bond lengths and the O-Zr-S angle (98.7 ) are similar to
those reported previously for species that contain the
À
À
{Cp2ZrOS} moiety: Zr S 2.459–2.554 ; Zr O 1.941–
2.199 ; O-Zr-S 92.6–103.38.[6b,12]
In summary, the heterobimetallic sulfides [LAl(m-S)2-
MCp2] are ideal precursors for the preparation of the
heterobimetallic oxide–hydroxide–hydrogensulfides 3 and 4
by hydrolysis. The presence of two free reactive function-
alities in a cis arrangement makes them potential starting
materials for the heterotrimetallic oxide–sulfides. Such reac-
tions are the subject of our ongoing research.
Experimental Section
All manipulations were performed under a dry and oxygen-free
atmosphere (N2 or Ar) by using Schlenk-line and glovebox techni-
ques.
[4] One can argue that the unobserved intermediate could be
[LAl(SH)(m-S)MCp2(OH)],
rather
than
[LAl(OH)(m-
À
3: H2O (26 mL, 1.46 mmol) was added quickly to a solution of 1
(0.50 g, 0.73 mmol) in THF/CH2Cl2 (45 mL, 1:1) at room temperature.
The suspension was stirred for 10 h and filtered. All the volatile
species were removed under vacuum to leave a brown solid residue,
which was treated twice with cold toluene (5 mL). After filtration and
drying in vacuo, 3 was obtained as a light brown powder. Yield 0.31 g
(60%); m.p.: 2278C (decomp); 1H NMR (500.13 MHz, CDCl3, 258C,
S)MCp2(SH)]. However, the higher stability of the Ti SH
bond towards hydrolysis, the shielding of the Ti center by two Cp
À
À
rings, and the easy replacement of the Al SH group by an Al
OH moiety in the next reaction step support our conclusion.
[5] V. Jancik, H. W. Roesky, unpublished results.
[6] a) G. A. Zank, C. A. Jones, T. B. Rauchfuss, A. L. Rheingold,
Inorg. Chem. 1986, 25, 1886 – 1891; b) D. Coucouvanis, A.
Hadjikyriacou, R. Lester, M. G. Kanatzidis, Inorg. Chem. 1994,
3
TMS): d = 1.07 (s, 1H, OH), 1.10 (d, JH-H = 6.9 Hz, 6H, CH(CH3)2),
Angew. Chem. Int. Ed. 2005, 44, 6016 –6018
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6017