ORGANIC
LETTERS
2005
Vol. 7, No. 22
4799-4801
Highly Stereoselective Reductions of
-Alkyl-1,3-diketones and -Alkyl- -keto
Esters Catalyzed by Isolated
r
r
â
NADPH-Dependent Ketoreductases
Dimitris Kalaitzakis,† J. David Rozzell,‡ Spiros Kambourakis,*‡ and
Ioulia Smonou*,†
Department of Chemistry, UniVersity of Crete, Iraklio 71409, Crete, Greece, and
BioCatalytics, Inc., 129 North Hill AVe, Suite 103, Pasadena, California 91106
smonou@chemistry.uoc.gr; skambourakis@biocatalytics.com
Received May 18, 2005
ABSTRACT
The biocatalytic reduction of
r-alkyl-1,3-diketones and r-alkyl-â-keto esters employing 1 of 20 different isolated NADPH-dependent ketoreductases
proved to be a highly efficient method for the preparation of optically pure keto alcohols or hydroxy esters.
Optically active R-alkyl-â-hydroxy ketones and R-alkyl-â-
hydroxy esters are important compounds in asymmetric
organic synthesis, where they are used as building blocks
for synthesis of polyketides, statins, protease inhibitors, and
other important pharmaceuticals.1 They are of relatively small
molecular weight, bear chirality at two stereogenic centers,
and contain at least two reactive functionalities (an alcohol,
a ketone, and other reactive groups potentially present in
the side chain of the substituent).
Enzyme-based approaches are being increasingly explored
for the synthesis of these classes of compounds. Whole cells
of microorganisms2 with ketoreductase enzyme activities
(particularly Baker’s yeast) have been frequently utilized;
however, many problems are associated with their use.2
Significant efforts are required to grow and screen large
libraries of microorganisms in order to identify those with
useful reductases for every particular application.2 Whole
cells typically contain multiple ketoreductase enzymes,
leading to mixed stereoselectivity and side reactions by other
competing ketoreductases. Whole-cell reactions also suffer
from low reaction rates, limited concentrations of product
per liter of culture, and inhibition due to the toxicity of
† University of Crete.
‡ BioCatalytics, Inc.
(1) For general reviews, see: (a) Liou G. F.; Khosla C. Current Opinion
Chemical Biology 2003, 7, 279-84. (b) Hoffmann, Reinhard W. An-
gewandte Chemie 1987, 99, 503-17. (c) Paterson, I.; Doughty, V. A.;
Florence, G.; Gerlach, K.; McLeod, M. D.; Scott, J. P.; Trieselmann, T.
ACS Symp. Ser. 2001, 783 (Organoboranes for Syntheses), 195-206. (d)
Chartrain, M.; Salmon, P. M.; Robinson, D. K.; Buckland, B. C. Curr. Opin.
Biotechnol. 2000, 11, 209-214. (e) Staunton, J.; Weissman, K. J. Nat. Prod.
Rep. 2001, 18, 380-416. (f) Sawada, D.; Kanai, M.; Shibasaki, M. J. Am.
Chem. Soc. 2000, 122, 10521-10532. (g) Eustache, F.; Dalko, P. I.; Cossy,
J. Tetrahedron Lett. 2003, 44, 8823-8826. (h) Hoffmann, R. W.; Helbig,
W.; Ladner, W. Tetrahedron Lett. 1982, 23, 3479-3482. (i) Vicario, J. L.;
Job, A.; Wolberg, M.; Mu¨ller, M.; Enders, D. Org. Lett. 2002, 4, 1023-
1026. (j) White, J. D.; Hanselmann, R.; Jackson, R. W.; Porter, W. J.; Ohba,
Y.; Tiller, T.; Wang, S. J. Org. Chem. 2001, 66, 5217-5231. (k) Che, Y.;
Gloer, J. B.; Wicklow, D. T. Org. Lett. 2004, 6, 1249-1252. (l) Magnin-
Lachaux, M.; Tan, Z.; Liang, B.; Negishi, E.-i. Org. Lett. 2004, 6, 1425-
1427.
(2) (a) Faber, K. Biotransformations in Organic Chemistry; Springer-
Verlag: Berlin, 1997; pp 160-206. (b) Buisson, D.; Henrot, S.; Larchev-
eque, M.; Azerad, R. Tetrahedron Lett. 1987, 28, 5033-5036. (c) Fauve,
A.; Veschambre, H. J. Org. Chem. 1988, 53, 5215-5219. (d) For a recent
review, see: Nakamura, K.; Yamanaka, R.; Matsuda, T.; Harada, T.
Tetrahedron: Asymmetry 2003, 14, 2659-2681. (e) Homann, M. J.; Vail,
R. B.; Previte, E.; Tamarez, M. Morgan, B.; Dodds, D. R.; Zaks, A.
Tetrahedron 2004, 60, 789-797.
10.1021/ol051166d CCC: $30.25
© 2005 American Chemical Society
Published on Web 10/04/2005