2 (a) L. Pu and H.-B. Yu, Chem. Rev., 2001, 101, 757–824; (b) A. Fu¨rstner,
Synthesis, 1989, 8, 571–590.
reactions: (c) E. Nakamura and K. Kubota, J. Org. Chem., 1997, 62,
792–793; (d) R. Poller and D. Silver, J. Organomet. Chem., 1978, 157,
247–253; (e) J. M. Andre´s, R. Pedrosa and A. Pe´rez-Encabo,
Tetrahedron, 2000, 56, 1217–1223; (f) G. Courtois and L. Miginiac,
J. Organomet. Chem., 1989, 376, 235–243.
3 (a) P. Knochel and R. D. Singer, Chem. Rev., 1993, 93, 2117–2188; (b)
P. J. Walsh, Acc. Chem. Res., 2003, 36, 739–749; (c) E. Negishi and
L. Anastasia, Chem. Rev., 2003, 103, 1979–2017; (d) P. Wipf, C. Kendall
and C. R. J. Stephenson, J. Am. Chem. Soc., 2003, 125, 761–768.
4 P. Knochel, in Comprehensive Organometallic Chemistry II, ed. E. W.
Abel, F. G. A. Stone, G. Wilkinson and A. McKillop, Pergamon Press,
Oxford, 1995, vol. 11, ch. 4.
16 Formed in situ using the conditions described in entry 10 of Table 1.
17 NMR spectroscopic data matched reported data: F. Orsini, F. Pelizzoni,
M. Pulici and L. M. Vallarino, J. Org. Chem., 1994, 59, 1–3.
1
18 Yields were determined by H NMR relative to internal standards.
19 M. A. Gutierrez, M. A. P. Martins and R. Rittner, Org. Magn. Reson.,
1982, 20, 20–25.
5 (a) P. Wipf and R. L. Nunes, Tetrahedron, 2004, 60, 1269–1279; (b)
J. A. Marshall, Chem. Rev., 2000, 100, 3163–3185.
6 Acids and Bases. Their Quantitative Behaviour, ed. R. P. Bell, Butler &
Tanner Ltd., Frome and London, 2nd edn, 1969, ch. 6.
7 F. G. Bordwell, Acc. Chem. Res., 1988, 21, 456–463 and references
contained therein.
8 (a) B. M. Trost and H. Ito, J. Am. Chem. Soc., 2000, 122, 12003–12004;
(b) B. M. Trost, H. Ito and E. R. Silcoff, J. Am. Chem. Soc., 2001, 123,
3367–3368.
9 B. M. Trost and V. S. C. Yeh, Angew. Chem., Int. Ed., 2002, 41,
861–863.
10 Y. Kawakami and T. Tsuruta, Bull. Chem. Soc. Jpn., 1971, 44, 247–257.
11 O. Yu. Okhlobystin and L. I. Zakharkin, J. Organomet. Chem., 1965, 3,
257–258.
12 Zn(OTf)2, i-Pr2NH, and 1-alkynes form Zn-alkynilides: D. E. Frantz,
R. Fa¨ssler and E. M. Carreira, J. Am. Chem. Soc., 1999, 121,
11245–11246.
13 (a) A. J. de Koning, P. E. van Rijn, J. Boersma and G. J. M. van der
Kerk, J. Organomet. Chem., 1979, 174, 129–140; (b) R. Nast, O. Kunzel
and R. Muller, Chem. Ber., 1962, 95, 2155–2160.
14 (a) M. M. Hansen, P. A. Bartlett and C. H. Heathcock,
Organometallics, 1987, 6, 2069–2074; (b) F. H. van der Steen,
J. Boersma, A. L. Spek and G. van Koten, J. Organomet. Chem.,
1990, 390, C21–C26; (c) S. C. Goel, M. Y. Chiang and W. E. Buhro,
J. Am. Chem. Soc., 1991, 113, 7069–7071.
20 The mechanism is ‘‘simplified’’ in that there are additional processes that
are likely to occur which complicate the mechanism. These include
dimerization and oligomerization processes as well as Schlenk-type
disproportionations. Also, the mechanism is most applicable to reactions
having only catalytic quantities of amine. When stoichiometric
quantities of amine are used the product could incorporate amine/
amido to form a mixed ligand cluster.
21 The ground-state structure of PhZnNR2 is likely to be dimeric (or
trimeric) with m-NR2 groups: Metal and Metalloid Amides, ed. M. F.
Lappert, P. P. Power, A. R. Sanger and R. L. Srivastava, John Wiley &
Sons, New York, 1980; PhZn[CH2C(O)NR92] is also likely to be dimeric
with m-C,O-[CH2(NR92)O] ligands related to those of the structurally
characterized Reformatsky ester {ZnBr(THF)[CH2C(O-t-Bu)O]}2,
which was crystallized from THF: J. Dekker, P. H. M. Budzelaar,
J. Boersma, G. J. M. van der Kerk and A. L. Spek, Organometallics,
1984, 3, 1403–1407.
22 Keq 5 {[Ka(CH3C(O)NR92)][Kd(ZnNR2)]}/{[Ka(HNR2)][Kd(ZnCH2C-
(O)NR92)]}, with Kd a heterolytic dissociation constant. The dimeriza-
tion of PhZnNR2 and/or PhZn[CH2C(O)NR92] will also affect the
equilibrium.
23 H. E. Bryndza, L. K. Fong, R. A. Paciello, W. Tam and J. E. Bercaw,
J. Am. Chem. Soc., 1987, 109, 1444–1456.
24 Attempts to study the equilibrium deprotonation of DEA by
PhZn(NC4H8O) at 50 uC were complicated by the (irreversible)
formation of significant quantities of PhH. Thus, direct observation of
the equilibrium was not possible.
15 a-Zincated (Reformatsky) amides in Pd-catalyzed couplings: (a)
T. Hama, X. Liu, D. A. Culkin and J. F. Hartwig, J. Am. Chem.
Soc., 2003, 125, 11176–11177; (b) E. Bentz, M. G. Moloney and
S. M. Westaway, Tetrahedron Lett., 2004, 45, 7395–7397; Addition
5306 | Chem. Commun., 2005, 5304–5306
This journal is ß The Royal Society of Chemistry 2005