Retro-Diels-Alder Reaction of 4H-1,2-Benzoxazines
SCHEME 1. Generation of o-QMs from
4H-1,2-Benzoxazines
can occur. In addition, there have been few studies of the
generation and applications of o-QMs containing a variety of
substituents attached at different positions. Recently, the
aromatic substituent effect on the reactivity of o-QMs for 1,4-
conjugate addition has been studied, and it turned out to be of
potential significance.6p Rokita et al. have reported substituent
effects on the rates of nucleophilic 1,4-conjugate addition of
some substituted o-QMs, particularly at the C6 and C7 positions,
and they showed that electronic perturbation of o-QMs by a
substituent greatly influenced their stability and reactivity.6p It
is possible that the electronic nature of substituents would
similarly have a great influence on the Diels-Alder reaction
of o-QMs.
In the present retro-Diels-Alder reaction of 4H-1,2-benzox-
azine, a single C-C bond and a single O-N bond in the
asymmetrical six-membered ring are broken, in contrast to the
cleavage of two equivalent C-C bonds in the case of bicyclo-
[2.2.1]heptane derivatives. While this retro-Diels-Alder reac-
tion, which involves bond cleavage between heteroatoms, can
generate O-containing reactive intermediates (o-QMs), the
mechanism of this kind of asymmetric retro-hetero-Diels-Alder
reactions is not well understood.13 Herein, we show first that
this retro-Diels-Alder reaction process, rather than the Diels-
Alder reaction process of the resultant o-QMs with dienophiles,
is the rate-determining step in the overall reaction, and second
that there are significant impacts of the nature and position of
the substituent and the polarity of the solvent on the retro-hetero-
Diels-Alder reaction process of 4H-1,2-benzoxazines. We show
that these features can be attributed to the polarized nature of
the transition structures, on the basis of experimental kinetic
studies and DFT calculations.
ring have been generated through the thermal retro-Diels-Alder
reaction of 4H-1,2-benzoxazines (Scheme 1).4,5
o-QMs are highly reactive, short-lived intermediates. They
undergo 1,4-conjugate addition with nucleophiles6,7 and Diels-
Alder cycloaddition with various dienophiles,6,7 affording ortho-
functionalized phenol and chroman derivatives with high
chemo-, regio-, and stereoselectivities. This chemistry has been
utilized for the synthesis of chroman structures found in several
natural products.7,8 Many thermal methods to generate o-QMs
in situ from various precursors have been reported,7 but most
of them involve various disadvantages, including inaccessibility
of precursors,7 undesirably high reaction temperature,7,9 long
reaction time,7,9,10 a need for additional catalysts,7,11 and
acidic7,11 or basic conditions,6m,7,12 and in all cases, side reactions
(4) Sugimoto, H.; Nakamura, S.; Ohwada, T. AdV. Synth. Catal. 2007,
349, 669-679.
(5) For recent reports on 4H-1,2-benzoxazines, see: (a) Ohwada, T.; Ohta,
T.; Shudo, K. Tetrahedron 1987, 43, 297-305. (b) Ohwada, T.; Shudo, K.
Yakugaku Zasshi 1989, 109, 1-11. (c) Ohwada, T.; Okabe, K.; Ohta, T.;
Shudo, K. Tetrahedron 1990, 46, 7539-7555. (d) Hirotani, S.; Zen, S.
Yakugaku Zasshi 1994, 114, 272-276. (e) Hirotani, S.; Kaji, E. Tetrahedron
1999, 55, 4255-4270. (f) Supsana, P.; Tsoungas, P. G.; Vavounis, G.
Tetrahedron Lett. 2000, 41, 1845-1847. (g) Cotelle, P.; Vezin, H.
Tetrahedron Lett. 2001, 42, 3303-3305. (h) Supsana, P.; Tsoungas, P. G.;
Aubry, A.; Skoulika, S.; Varvounis, G. Tetrahedron 2001, 57, 3445-3453.
(i) Rousseau, B.; Rosazza, J. P. N. J. Agric. Food Chem. 1998, 46, 3314-
3317. (j) Napolitano, A.; d’Ischia, M. J. Org. Chem. 2002, 67, 803-810.
(k) Yato, M.; Ohwada, T.; Shudo, K. J. Am. Chem. Soc. 1990, 112, 5341-
5342. (l) Nakamura, S.; Uchiyama, M.; Ohwada, T. J. Am. Chem. Soc.
2003, 125, 5282-5283. (m) Nakamura, S.; Sugimoto, H.; Ohwada, T. J.
Am. Chem. Soc. 2007, 129, 1724-1732.
Results and Discussion
Generation of o-QMs from 4H-1,2-Benzoxazines. In gen-
eral, o-QMs are too unstable to be isolated and observed
spectroscopically, unless they are trapped with metals such as
Cp*Ir.6c,k,q In all reported thermal methods, o-QMs were
generated in situ, and underwent 1,4-conjugate addition with
nucleophiles or Diels-Alder cycloadditions with dienophiles.6,7
In this study, we used vinyloxycyclohexane as a Diels-Alder
dienophile, because of the reverse-electron demanding nature
of the Diels-Alder reaction of o-QMs (Scheme 2). That is,
o-QMs require a highly electron-rich dienophile, such as vinyl
ether.4 In addition, vinyloxycyclohexane has a high boiling point
among vinyl ethers, and its less volatile nature enabled us to
control the reaction conditions precisely.
(6) For recent reports on the use of o-quinone methides, see: (a) Adam,
W.; Hadjiarapoglou, L.; Peters, K.; Sauter, M. J. Am. Chem. Soc. 1993,
115, 8603-8608. (b) Van de Water, R. W.; Magdziak, D. J.; Chau, J. N.;
Pettus, T. R. R. J. Am. Chem. Soc. 2000, 122, 6502-6503. (c) Amouri, H.;
Vaissermann, J.; Rager, M. N.; Grotjahn, D. B. Organometallics 2000, 19,
1740-1748. (d) Jones, R. M.; Van de Water, R. W.; Lindsey, C. C.; Hoarau,
C.; Ung, T.; Pettus, T. R. R. J. Org. Chem. 2001, 66, 3435-3441. (e) Jones,
R. M.; Selenski, C.; Pettus, T. R. R. J. Org. Chem. 2002, 67, 6911-6915.
(f) Britt, P. F.; Buchanan, A. C.; Cooney, M. J.; Martineau, D. R. J. Org.
Chem. 2000, 65, 1376-1389. (g) Chiang, Y.; Kresge, A. J.; Zhu, Y. J. Am.
Chem. Soc. 2002, 124, 6349-6356. (h) Amouri, H.; Le Bras, J. Acc. Chem.
Res. 2002, 35, 501-510. (i) Paul, G. C.; Gajewski, J. J. J. Org. Chem.
1993, 58, 5060-5062. (j) Kasturi, T. R.; Jayaram, S. K.; Sattigeri, J. A.;
Pragnacharyulu, P. V. P.; Row, T. N. G.; Venkatesan, R. K. K.; Begum,
N. S.; Munirathinam, N. Tetrahedron 1993, 49, 7145-7158. (k) Lev, D.
A.; Grotjahn, D. B.; Amouri, H. Organometallics 2005, 24, 4232-4240.
(l) Wojciechowski, K.; Dolatowska, K. Tetrahedron 2005, 61, 8419-8422.
(m) Modica, E.; Zanaletti, R.; Freccero, M.; Mella, M. J. Org. Chem. 2001,
66, 41-52. (n) Marino, J. P.; Dax, S. L. J. Org. Chem. 1984, 49, 3671-
3672. (o) Barrero, A. F.; del Moral, J. F. Q.; Herrador, M. M.; Arteaga, P.;
Cortes, M.; Benites, J.; Rosellon, A. Tetrahedron 2006, 62, 6012-6017.
(p) Weinert, E. E.; Dondi, R.; Colloredo-Melz, S.; Frankenfield, K. N.;
Mitchell, C. H.; Freccero, M.; Rokita, S. E.; J. Am. Chem. Soc. 2006, 128,
11940-11947. (q) Amouri, H.; Besace, Y.; Le Bras, J.; Vaissermann, J. J.
Am. Chem. Soc. 1998, 120, 6171-6172.
(8) For example, see: (a) Rodriguez, R.; Adlington, R. M.; Moses, J.
E.; Cowley, A.; Baldwin, J. E. Org. Lett. 2004, 6, 3617-3619. (b) Baldwin,
J. E.; Mayweg, A. V. W.; Neumann, K.; Pritchard, G. J. Org. Lett. 1999,
1, 1933-1935. (c) Adlington, R. M.; Baldwin, J. E.; Pritchard, G. J.;
Williams, A. J.; Watkin, D. J. Org. Lett. 1999, 1, 1937-1939. (d) Adlington,
R. M.; Baldwin, J. E.; Mayweg, A. V. W.; Pritchard, G. J. Org. Lett. 2002,
4, 3009-3011. (e) Rodriguez, R.; Moses, J. E.; Adlington, R. M.; Baldwin,
J. E. Org. Biomol. Chem. 2005, 3, 3488-3495.
(9) Katada, T.; Eguchi, S.; Esaki, T.; Sasaki, T. J. Chem. Soc., Perkin
Trans. 1 1984, 2649-2653.
(10) Pettigrew, J. D.; Bexrud, J. A.; Freeman, R. P.; Wilson, P. D.
Heterocycles 2004, 62, 445-452.
(11) Chiba, K.; Hirano, T.; Kitano, Y.; Tada, M. Chem. Commun. 1999,
8, 691-692.
(12) Loubinoux, B.; Miazimbakana, J.; Gerardin, P. Tetrahedron Lett.
1989, 30, 1939-1942.
(7) For a recent review see: (a) Van de Water, R. W.; Pettus, T. R. R.
Tetrahedron 2002, 58, 5367-5405. (b) Pettus, T. R. R.; Selenski, C.;
Griesbeck, A. G. In Science of Synthesis; Griesbeck, A. G., Ed.; Houben-
Weyl: New York, 2006; Chapter 12, pp 831-899.
(13) Retro-Diels-Alder reaction of isomeric benzoxazine was reported:
Glover, S. A.; Jones, K. M.; McNee, I. R.; Rowbottom, C. A. J. Chem.
Soc., Perkin Trans. 2 1996, 1367-1376.
J. Org. Chem, Vol. 72, No. 26, 2007 10089