Homo- and Heteronuclear Helicates
FULL PAPER
temperature, a slightly yellow solution was formed. Then, bipyridine 1
(84 mg, 0.33 mmol) dissolved in acetonitrile (20 mL) and diisopropyl-
ethylamine (222.3 mL, 167 mg, 1.30 mmol, 2 equiv) were added. The sol-
vent was removed after stirring overnight, to leave a yellow solid, which
was dissolved in ethyl acetate and washed with aqueous NH4Cl,
NaHCO3, H2O, and brine. The protected ligand L2-Me4 was obtained
after removal of the solvent (117 mg, 69%). M. p. 2478C (decomp);
1H NMR ([D6]DMSO, 400.0 MHz): d=10.61 (s, 2H), 8.95 (t, J=1.6 Hz,
2H), 8.34 (d, J=1.6 Hz, 4H), 7.24 (dd, J=7.7, 1.9 Hz, 2H), 7.20 (t, J=
7.7 Hz, 2H), 7.16 (dd, J=7.7, 1.9 Hz, 2H), 3.88 (s, 6H), 3.83 ppm (s, 6H);
13C NMR (CDCl3, 125.8 MHz): d=163.2, 152.4, 151.2, 147.1, 140.4, 134.9,
127.7, 125.9, 124.7, 122.8, 120.8, 116.0, 61.7, 56.1 ppm; MS (EI, 70 eV):
m/z (%): 514 (100) [M+]; elemental analysis calcd (%) for C28H26N4O6:
C 65.36, H 5.09, N 10.89; found: C 64.89, H 4.88, N 10.53.
N,N’-Bis(2,3-dihydroxybenzoate)-2,2’-bipyridine-5,5-diamine (L2-H4): L2-
Me4 (71 mg, 0.14 mmol) was dissolved in dichloromethane (20 mL) and
cooled to 08C. At this temperature BBr3 (0.13 mL, 285.6 mg, 1.40 mmol)
was added. The yellow mixture was stirred overnight at room tempera-
ture and then methanol was added. The solvent was removed in vacuo
and the residue was dissolved in ethyl acetate and washed with water.
Removal of the solvent afforded L2-H4 (64 mg, quantitative). M.p. 2618C
(decomp); 1H NMR ([D6]DMSO, 400.0 MHz): d=10.86 (s, 2H), 9.20 (d,
J=2.0 Hz, 2H), 8.55 (m, 4H), 7.40 (dd, J=8.0, 1.4 Hz, 2H), 7.04 (dd,
J=8.0, 1.4 Hz, 2H), 6.82 ppm (t, J=8.0 Hz, 2H); 13C NMR ([D6]DMSO,
125.8 MHz): d=167.5, 147.1, 145.9, 144.7, 138.8, 136.4, 130.8, 121.9, 118.9,
118.5, 117.6 ppm (one signal cannot be observed); MS (EI, 70 eV): m/z
(%): 458 (100) [M+]; elemental analysis calcd (%) C24H18N4O6: C 62.88,
H 3.96, N 12.22; found: C 62.57, H 4.27, N 11.79.
refinement SHELXL-97 (G. M. Sheldrick, Universität Gçttingen, 1997),
graphics SCHAKAL (E. Keller, Universität Freiburg, 1997).
CCDC-241101 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge from the Cambridge
K4[(L1)3Ti2]: Yield: 76.0 mg (quantitative); 1H NMR ([D6]DMSO,
500.1 MHz): d=8.83 (s, 6H), 8.49 (d, J=2.0 Hz, 6H), 8.29 (d, J=8.4 Hz,
6H), 7.74 (dd, J=8.4, 2.0 Hz, 6H), 7.10 (d, J=7.7 Hz, 6H), 6.41 (pseudo
t, J=7.7 Hz, 6H), 6.22 ppm (d, J=7.7 Hz, 6H); ESI-MS (methanol):
m/z: 1479 [MÀK]À, 720 [MÀ2K]2À, 701 [MÀ3K+H]2À, 467 [MÀ3K]3À
;
elemental analysis calcd (%) for C72H42N12K4O12Ti2·2H2O·4DMF:
C 54.60, H 4.04, N 12.13; found: C 54.47, H 4.39, N 11.84.
Li4[(L2)3Ti2]: Yield: 16.2 mg (quantitative); 1H NMR ([D6]DMSO,
400 MHz): d=12.44 (s, 6H), 8.93 (s, 6H), 7.64 (br, 6H), 7.21–7.17 (m,
12H), 6.58 (t, J=7.6 Hz, 6H), 6.42 ppm (d, J=7.6 Hz, 6H); negative-ion
mode ESI MS: m/z: 1473 [MÀ2Li+H]À; IR (drift, KBr): n˜ =3409, 1661,
1590, 1535, 1467, 1441, 1389, 1246, 1210, 1059, 844, 748, 679, 524 cmÀ1
;
elemental analysis calcd (%) for C72H42Li4N12O18Ti2·DMF·4H2O: C 55.20,
H 3.52, N 11.16; found: C 55.21, H 3.28, N 11.04.
Na4[(L2)3Ti2]: Yield: 16.9 mg (quantitative); 1H NMR ([D6]DMSO,
400 MHz): d=12.50 (s, 6H), 8.90 (s, 6H), 7.77 (d, J=7.3 Hz, 6H), 7.32–
7.21 (m, 12H), 6.59 (t, J=7.6 Hz, 6H), 6.44 ppm (d, J=7.6 Hz, 6H); neg-
ative-ion mode ESI MS: m/z: 1527 [MÀNa]À, 741 [MÀ3Na+H]2À; IR
(drift, KBr): n˜ =3408, 1659, 1588, 1532, 1465, 1439, 1386, 1285, 1245,
1208, 1056, 842, 745, 677, 522 cmÀ1; elemental analysis calcd (%) for
C72H42N12Na4O18Ti2·DMF·12H2O: C 48.95, H 4.00, N 9.89; found: C
49.12, H 4.04, N 8.87.
K4[(L2)3Ti2]: Yield: 17.6 mg (quantitative); 1H NMR ([D6]DMSO,
400 MHz): d=12.54 (s, 6H), 8.86 (s, 6H), 7.83 (br, 6H), 7.33–7.26 (m,
6H), 7.21 (d, J=7.6 Hz, 6H), 6.58 (t, J=7.6 Hz, 6H), 6.44 ppm (d, J=
7.6 Hz, 6H); negative-ion mode ESI MS: m/z: 1575 [MÀK]À, 1537
[MÀ2K+H]À, 768 [MÀ2K]2À; IR (drift, KBr): n˜ =3427, 1660, 1587,
1531, 1464, 1439, 1386, 1283, 1244, 1208, 1055, 842, 744, 678, 522 cmÀ1; el-
emental analysis calcd (%) for C72H42N12K4O18Ti2·2DMF·6H2O: C 50.11,
H 3.67, N 10.49; found: C 49.98, H 3.89, N 10.01.
General procedure for the preparation of dinuclear complexes
M4[(L)3Ti2] (M=Li, Na, K): Ligand L1-H4 (3 equiv), [TiO(acac)2]
(2 equiv), and the alkali metal carbonate (2 equiv) were mixed in DMF
and stirred overnight. The solvent was removed in vacuo to obtain the
complexes as red-orange solids which were purified by filtration over Se-
phadex LH 20.
Li4[(L1)3Ti2]: Yield: 69.5 mg (quantitative); 1H NMR ([D6]DMSO,
500.1 MHz): d=8.72 (s, 6H), 8.38 (d, J=2.4 Hz, 6H), 8.24 (d, J=8.4 Hz,
6H), 7.65 (dd, J=8.4, 2.4 Hz, 6H), 7.03 (d, J=7.7 Hz, 6H), 6.40 (pseudo
t, J=7.7 Hz, 6H), 6.19 ppm (d, J=7.7 Hz, 6H); 13C NMR ([D6]DMSO,
125.7 MHz): d=165.3, 162.8, 161.6, 152.1, 149.6, 143.2, 128.8, 121.1, 120.9,
119.6, 118.5, 116.8 ppm; ESI-MS (methanol): m/z: 688 [MÀ2Li]2À, 685
[MÀ3Li+H]2À, 456 [MÀ3Li]3À, 454 [MÀ4Li+H]3À; elemental analysis
calcd (%) for C72H42N12Li4O12Ti2·9H2O·2DMF: C 55.14, H 4.39, N 11.54;
found: C 55.08, H 5.02, N 11.85.
(L2-H4)PdCl2: L2-H4 (15 mg, 0.033 mmol) and K2PdCl4 (10.7 mg,
0.033 mmol) were heated in DMF for 5 h to 708C. The solvent was re-
moved in vacuo and the residue was washed with water and then dried to
obtain 21 mg of
a
yellow solid in quantitative yield. 1H NMR
([D6]DMSO, 300 MHz): d=11.05 (s, 2H), 9.55 (d, J=2.5 Hz, 2H), 8.64
(dd, J=8.9, 2.5 Hz, 2H), 8.46 (d, J=8.9 Hz, 2H), 7.38 (dd, J=7.9, 1.4 Hz,
2H), 7.04 (dd, J=7.9, 1.4 Hz, 2H), 6.80 ppm (t, J=7.9 Hz, 2H); MS (EI,
70 eV): m/z (%): 638 (100) [M]+; IR (drift, KBr): n˜ =3434, 2921, 1657,
1582, 1540, 1497, 1471, 1384, 1323, 1273, 1222, 840, 801, 741 cmÀ1; ele-
mental analysis calcd (%) for C24H18N4O6PdCl2: C 45.34, H 2.85, N 8.81;
found: C 44.89, H 3.10, N 9.28.
Na4[(L1)3Ti2]: Yield: 72.7 mg (quantitative); 1H NMR ([D6]DMSO,
500.1 MHz): d=8.82 (s, 6H), 8.46 (d, J=2.4 Hz, 6H), 8.25 (d, J=8.3 Hz,
6H), 7.67 (dd, J=8.3, 2.4 Hz, 6H), 7.08 (d, J=7.7 Hz, 6H), 6.41 (pseudo
t, J=7.7 Hz, 6H), 6.22 ppm (d, J=7.7 Hz, 6H); 13C NMR ([D6]DMSO,
125.7 MHz): d=165.2, 162.8, 161.2, 152.1, 149.5, 143.2, 129.1, 121.1, 120.7,
119.6, 118.8, 116.8 ppm; ESI-MS (methanol): m/z: 1431 [MÀNa]À, 704
[(L2-H4)3Zn]Cl2: The ligand L2-H4 (15 mg, 0.033 mmol) and ZnCl2
(1.5 mg, 0.011 mmol) were stirred overnight in DMF. Removal of the sol-
vent afforded a yellow solid in quantitative yield (16.5 mg); 1H NMR
([D6]DMSO, 300 MHz): d=11.28 (br, 6H), 10.68 (s, 6H), 9.56 (br, 6H),
9.03 (s, 6H), 8.42 (d, J=8.7 Hz, 6H), 8.35 (dd, J=8.7, 2.4 Hz, 6H), 7.43
(dd, J=7.9, 1.5 Hz, 6H), 7.02 (dd, J=7.9 Hz, 1.5 Hz, 6H), 6.81 ppm (t,
J=7.9 Hz, 6H); IR (drift, KBr): n˜ =3424, 1656, 1532, 1477, 1388, 1261,
1219, 1058, 840, 739 cmÀ1; positive-ion mode ESI MS (methanol): m/z:
[MÀ2Na]2À, 693 [MÀ3Na+H]2À, 462 [MÀ3Na]3À, 455 [MÀ4Na+H]3À
;
elemental analysis calcd (%) for C72H42N12Na4O12Ti2·4H2O·4DMF: C
55.45, H 4.32, N 12.32; found: C 55.46, H 4.67, N 11.89.
X-ray crystal structure analysis for Na4[(L1)3Ti2]: formula C72H42N12O12Ti2-
Na4·12C3H7NO·H2O, Mr =2350.10, red crystal 0.300.200.10 mm, a=
15.586(1),
b=20.796(1),
c=38.513(1) ,
b=100.72(1)8,
V=
[MÀ2Cl]2+
;
elemental
analysis
calcd
(%)
for
12265.2(10) 3, 1calcd =1.273 gcmÀ3, m=2.21 cmÀ1, empirical absorption
correction (0.937ꢀTꢀ0.978), Z=4, monoclinic, space group C2/c (no.
15), l=0.71073 , T=198 K, w and f scans, 18878 reflections collected
(Æh, Æk, Æl), [(sinq)/l]=0.59 À1, 10751 independent (Rint =0.042) and
6630 observed reflections [Iꢁ2s(I)], 710 refined parameters, R=0.103,
wR2 =0.295, max. residual electron density 1.83(À0.55) eÀ3, some of the
DMF molecules show severe disorder, refinement with split positions did
not improve the model, hydrogen atoms as part of water molecules could
not be located, others calculated and refined riding.
719
C72H54N12O18Cl2Zn·3DMF·2H2O: C 55.06, H 4.51, N 11.89; found: C
54.96, H 4.78, N 12.59.
K2[(L2)3Zn]Ti2: L2-H4 (15 mg, 0.033 mmol), [TiO(acac)2] (5.7 mg,
0.022 mmol), K2CO3 (3 mg, 0.022 mmol), and ZnCl2 (1.5 mg, 0.011 mmol)
were mixed in DMF and stirred overnight. The solvent was removed and
the residue washed with water and dried in vacuo to obtain a red solid in
quantitative yield (17.6 mg). 1H NMR ([D6]DMSO, 400 MHz): d=11.48
(s, 6H), 8.81 (d, J=8.6 Hz, 6H), 8.75 (d, J=8.6 Hz, 6H), 7.99 (s, 6H),
7.00 (d, J=7.7 Hz, 6H), 6.49 (t, J=7.7 Hz, 6H), 6.37 ppm (d, J=7.7 Hz,
6H); negative-ion mode ESI MS (methanol): m/z: 761 [MÀ2K]2À; IR
(drift, KBr): n˜ =3440, 1664, 1590, 1538, 1480, 1440, 1385, 1308, 1247,
1207, 1056, 848, 742, 679, 522 cmÀ1; elemental analysis calcd (%) for
The data set was collected with a Nonius KappaCCD diffractometer,
equipped with a rotating-anode generator. Programs used: data collection
COLLECT (Nonius B.V., 1998), data reduction Denzo-SMN,[17] absorp-
tion correction SORTAV,[18] structure solution SHELXS-97,[19] structure
Chem. Eur. J. 2005, 11, 5742 – 5748
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5747