6786 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 22
Letters
(9) Seshadri, T. R. Polyphenols of Pterocarpus and Dalbergia woods.
Phytochemistry 1972, 11, 881-898.
(10) Langkake, P.; Cornford, C. A.; Price, R. J. Identification of
pterostilbene as a phytoalexin from Vitis vinifera leaves. Phy-
tochemistry 1979, 18, 1025-1027.
(11) Paul, B.; Masih, I.; Deopujari, J.; Charpentier, C. Occurrence of
resveratrol and pterostilbene in age-old darakchasava, an
ayurvedic medicine from India. J. Ethnopharmacol. 1999, 68,
71-76.
(12) Yao, C. S.; Lin, M.; Liu, X.; Wang, Y. H. Stilbene derivatives
from Gnetum cleistostachyum. Asian Nat. Prod. Res. 2005, 7,
131-137.
(13) Percec, V.; Chu, P.; Kawasumi, M. Toward “Willowlike” Ther-
motropic Dendrimers. Macromolecules 1994, 27, 4441-4453.
(14) Bharathi, P.; Zhao, H.; Thayumanavan, S. Toward Globular
Macromolecules with Functionalized Interiors: Design and
Synthesis of Dendrons with an Interesting Twist. Org. Lett.
2001, 3, 1961-1964.
derivatives confers a strong antiproliferative potential
provided that an hydroxyl group is present (compound
6). Conversely, the concurrent presence of three meth-
oxy groups and three aromatic rings (compound 7)
abrogated the antiproliferative capacity of the molecule,
possibly for its highly lipophilic nature. Interestingly,
methoxylation on the 4′-position alone makes the mol-
ecule less antiproliferative. This was the case of com-
pound 1 and compound 5 with either two or three
aromatic rings, respectively. This argues in favor of an
essential role of the 4′-hydroxy group for the anti-
proliferative activity of resveratrol.20
Altogether, our findings show that targeting ceramide
signaling by resveratrol analogues might provide novel
promising strategies to control cancer cell growth.
(15) (a) Deak, M.; Falk, H. On the chemistry of the resveratrol
diastereomers. Monatsh. Chem. 2003, 134, 883-888. (b) Zbaida,
S.; Kariv, R. Biomimetic models for monooxygenases. Biopharm.
Drug Dispos. 1989, 10, 431-442. (c) Metzler, M.; Neumann, H.
G. Epoxidation of the stilbene double bond, a major pathway in
aminostilbene metabolism. Xenobiotica 1977, 7, 117-132. (d)
Matzler, M. Metabolic activation of diethylstilbestrol. Indirect
evidence for the formation of a stilbene oxide intermediate in
hamster and rat. Biochem. Pharmacol. 1975, 24, 1449-1453.
(16) (a) Pervaiz S. Resveratrol: from grapevines to mammalian
biology. FASEB J. 2003, 17, 1975-1985. (b) Trela, B.; Water-
house, A. Resveratrol: isomeric molar absorptivities and stabil-
ity. J. Agric. Food Chem. 1996, 44, 1253-1257. (c) Deak, M.;
Falk, H. On the chemistry of resveratrol diastereoisomers.
Monatsh. Chem. 2003, 134, 883-888.
Supporting Information Available: Experimental con-
ditions and analytical data of compounds 4-7. This material
is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Aggarwal, B. B.; Bhardwaj, A.; Aggarwal, R. S.; Seeram, N. P.;
Shishodia, S.; Takada, Y. Role of resveratrol in prevention and
therapy of cancer: preclinical and clinical studies. Anticancer
Res. 2004, 24, 2783-2840.
(2) Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.;
Beecher, C. W.; Fong, H. H.; Farnsworth, N. R.; Kinghorn, A.
D.; Mehta, R. G.; Moon, R. C.; Pezzuto, J. M. Cancer chemopre-
ventive activity of resveratrol, a natural product derived from
grapes. Science 1997, 275, 218-220.
(3) Signorelli, P.; Ghidoni, R. Resveratrol as an anticancer nutri-
ent: molecular basis, open questions and promises. J. Nutr.
Biochem. 2005, 16, 449-466.
(17) Lion, C. J.; Matthews, C. S.; Stevens, M. F.; Westwell, A. D.
Synthesis, antitumor evaluation, and apoptosis-inducing activity
of hydroxylated (E)-stilbenes. J. Med. Chem. 2005, 48, 1292-
1295.
(4) Scarlatti, F.; Sala, G.; Somenzi, G.; Signorelli, P.; Sacchi, N.;
Ghidoni, R. Resveratrol induces growth inhibition and apoptosis
in metastasis breast cancer cells via de novo ceramide signalling.
FASEB J. 2003, 17, 2339-2341.
(5) Sala, G.; Minutolo, F.; Macchia, M.; Sacchi, N.; Ghidoni, R.
Resveratrol structure and ceramide-associated growth inhibition
in prostate cancer cells. Drugs Exp. Clin. Res. 2003, 29, 263-
269.
(6) Ogretmen, B.; Hannun, Y.; Biologically active sphingolipids in
cancer pathogenesis and treatment. Nat. Rev. Cancer 2004, 4,
604-616.
(7) Patrick Reynolds, C.; Maurer, B.; Kolesnick, R. N. Ceramide
synthesis and metabolism as a target for cancer therapy. Cancer
Lett. 2004, 206, 169-180.
(18) Schneider, Y.; Chabert, P.; Stutzmann. J.; Coelho, D.; Fouger-
ousse, A.; Gosse, F.; Launay, J. F.; Brouillard, R.; Raul, F.
Resveratrol analogue (Z)-3,5,4′-trimethoxystilbene is a potent
anti-mitotic drug inhibiting tubulin polymerization. Int. J.
Cancer 2003, 107, 189-196.
(19) Belleri, M.; Ribatti, D.; Nicoli, S.; Cotelli, F.; Forti, L.; Tannini,
V.; Stivala, L. A.; Presta, M. Antiangiogenic and vascular-
targeting activity of the microtubuledestabilizing trans-resvera-
trol derivative 3,5,4′-trimethoxystilbene. Mol. Pharmacol. 2005,
67, 1451-1459.
(20) Matsuoka, A.; Takeshita, K.; Furuta, A.; Ozaki, M.; Fukuhara,
K.; Miyata, N. The 4′-hydroxy group is responsible for the in
vitro cytogenetic activity of resveratrol. Mutat. Res. 2002, 521,
29-35.
(8) Selzner, M.; Bielawska, A.; Morse, A. M.; Rudiger, H. A.;
Sindram, D.; Hannun, Y. A.; Clavien, P. A. Induction of apoptotic
cell death and prevention of tumor growth by ceramide ana-
logues in metastatic human colon cancer. Cancer Res. 2001, 61,
1233-40.
JM050528K