C O M M U N I C A T I O N S
Table 2. Organocatalytic Reductive Michael Cyclization
With the proof of concept being made, a variety of different
single flask, tandem enamine-iminium catalysis sequences seem
possible and will be investigated.
Acknowledgment. Kind donations by Lanxess and Degussa and
technical assistance by the analytical departments of the Max-
Planck-Institut fu¨r Kohlenforschung are gratefully acknowledged.
This study was funded in part by the DFG-Priority Program
Organocatalysis (SPP 1179). We thank William R. Roush for
providing an experimental procedure for the synthesis of substrates
24 and 26, and Nicola Vignola, Arno Do¨hring, and Michael Stadler
for the preparation of Hantzsch esters and catalysts.
Supporting Information Available: Experimental procedures,
compound characterization, NMR spectra, and HPLC traces (PDF). This
References
(1) For an account on aminocatalysis, see: List, B. Synlett 2001, 1675-1686.
(2) For the first enamine catalytic asymmetric intermolecular aldol, Mannich,
R-amination, and intramolecular R-alkylation reactions, see: (a) List, B.;
Lerner, R. A.; Barbas, C. F., III. J. Am. Chem. Soc. 2000, 122, 2395-
2396. (b) List, B. J. Am. Chem. Soc. 2000, 122, 9336-9337. (c) List, B.
J. Am. Chem. Soc. 2002, 124, 5656-5657. (d) Vignola, N.; List, B. J.
Am. Chem. Soc. 2004, 126, 450-451. (e) For an account of our
contributions to this area, see: List, B. Acc. Chem. Res. 2004, 37, 548-
557. Also see: (f) List, B. Tetrahedron 2002, 58, 5572-5590. (g) Gro¨ger,
H.; Wilken, J. Angew. Chem., Int. Ed. 2001, 40, 529-532. (h) Movassaghi,
M.; Jacobsen, E. N. Science 2002, 298, 1904. (i) Northrup, A. B.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798-6799. (j) Notz,
W.; Tanaka, F.; Barbas, C. F., III. Acc. Chem. Res. 2004, 37, 580-591.
(k) Co´rdova, A.; Notz, W.; Barbas, C. F., III. J. Org. Chem. 2002, 67,
301-303. (l) Bøgevig, A.; Kumaragurubaran, N.; Jørgensen, K. A. Chem.
Commun. 2002, 620-621. (m) Cobb, A. J. A.; Shaw, D. M.; Longbottom,
D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84-96. (n)
Wang, W.; Wang, J.; Li, H. Angew. Chem., Int. Ed. 2005, 44, 1369-
1371. (o) Allemann, C.; Gordillo, R.; Clemente, F. R.; Cheong, P. H.-Y.;
Houk, K. N. Acc. Chem. Res. 2004, 37, 558-569. (p) Enders, D.; Grondal,
C.; Vrettou, M.; Raabe, G. Angew. Chem., Int. Ed. 2005, 44, 4079-4083.
(q) Sunden, H.; Ibrahem, I.; Erikson, L.; Cordova, A. Angew. Chem., Int.
Ed. 2005, 44, 4877-4880. (r) Ishii, T.; Fujioka, S.; Sekihuchi, Y.; Kotsuki,
H. J. Am. Chem. Soc. 2004, 126, 9558-9559. For pioneering studies,
see: (s) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. Engl.
1971, 10, 496-497. (t) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974,
39, 1615-1621.
(3) For example, see: (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2000, 122, 4243-4244. (b) Brown, S. P.; Goodwin,
N. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 1192-1194.
(c) Wilson, R. M.; Jen, W. S.; MacMillan, D. W. C. J. Am. Chem. Soc.
2005, 127, 11616-11617. (d) Marigo, M.; Franzen, J.; Poulsen, T. B.;
Zhuang, W.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 6964-6965.
(4) (a) Yang, J. W.; Hechavarria Fonseca, M. T.; List, B. Angew. Chem., Int.
Ed. 2004, 43, 6660-6662. (b) Yang, J. W.; Hechavarria Fonseca, M. T.;
Vignola, N.; List, B. Angew. Chem., Int. Ed. 2005, 44, 108-110. (c) For
an independent study on the same reaction, see: Ouellet, S. G.; Tuttle, J.
B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32-33.
(5) For copper-catalyzed tandem enone conjugate reduction-alkylations/
aldolizations, see: (a) Lipshutz, B. H.; Chrisman, W.; Noson, K.; Papa,
P.; Sclafani, J. A.; Vivian, R. W.; Keith, J. M. Tetrahedron 2000, 56,
2779-2788. (b) Yun, J.; Buchwald, S. J. Org. Lett. 2001, 3, 1129-1131.
(6) For example, see: (a) Huddleston, R. R.; Krische, M. J. Synlett 2003,
12-21. (b) Jang, H.-Y.; Huddleston, R. R.; Krische, M. J. J. Am. Chem.
Soc. 2002, 124, 15156-15157. (c) Shibata, I.; Kato, H.; Ishida, T.; Yasuda,
M.; Baba, A. Angew. Chem., Int. Ed. 2004, 116, 729-732.
a Using catalyst 9a. b Using catalyst 9c.
clization is likely to proceed equally and will be reported in the
future. The spacer between the enal and the Michael acceptor
portion is not limited to a (substituted) benzene ring. As expected
from our previous studies, the cyclization of aliphatic enal 24 with
catalyst 9d gives product 25 in somewhat reduced enantioselectivity
(eq 2). In contrast, the corresponding higher homologue 26 provides
the product (27) in excellent enantiomeric excess when we used
catalyst 9a (eq 3).
(7) For example, see: (a) Taylor, S. J.; Duffey, M. O.; Morken, J. P. J. Am.
Chem. Soc. 2000, 122, 4528-4529. (b) Nishiyama, H.; Shiomi, T.;
Tsuchiya, Y.; Matsuda, I. J. Am. Chem. Soc. 2005, 127, 6972-6973. (c)
Lam, H. W.; Joensuu, P. M. Org. Lett. 2005, 7, ASAP.
(8) For a catalytic asymmetric tandem Michael addition-H2 hydrogenation,
see: Guo, R.; Morris, R. H.; Song, D. J. Am. Chem. Soc. 2005, 127,
516-517.
(9) Hechavarria Fonseca, M. T.; List, B. Angew. Chem., Int. Ed. 2004, 43,
3958-3960.
(10) For intermolecular enamine catalytic Michael additions of aldehydes to
enones, see: (a) Halland, N.; Hazell, R. G.; Jørgensen, K. A. J. Org.
Chem. 2002, 67, 8331-8338. For significantly improved catalyst systems,
see: (b) Peelen, T. J.; Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2005,
127, 11598-11599. (c) Chi, Y.; Gellman, S. H. Org. Lett. 2005, 7, ASAP.
In summary, we have developed a highly enantioselective
organocatalytic reductive Michael cyclization of enal enones. We
assume that the reaction proceeds via an iminium catalytic conjugate
reduction followed by an in situ enamine catalytic asymmetric
Michael cyclization. Notable features of our reaction include (a)
the high selectivity (chemo-, regio-, diastereo-, and enantioselec-
tivity); (b) the not fully explored but already broad scope; (c) the
practical and user-friendly reaction conditions; and (d) potential
application in the synthesis of natural products.
JA055735O
9
J. AM. CHEM. SOC. VOL. 127, NO. 43, 2005 15037