Communications
3056 – 3058; Angew. Chem. Int. Ed. 1998, 37, 2864 – 2866; e) F.
Bertrand, B. Quiclet-Sire, S. Seguin, S. Z. Zard, Angew. Chem.
1999, 111, 2135 – 2138; Angew. Chem. Int. Ed. 1999, 38, 1943 –
1946;
[4] a) S. Kim, C. J. Lim, Angew. Chem. 2002, 114, 3399 – 3401;
Angew. Chem. Int. Ed. 2002, 41, 3265 – 3267; b) S. Kim, C. J. Lim,
Bull. Korean Chem. Soc. 2003, 24, 1219 – 1222.
[5] a) S. Kim, H.-J. Song, T.-L. Choi, J.-Y. Yoon, Angew. Chem. 2001,
113, 2592 – 2594; Angew. Chem. Int. Ed. 2001, 40, 2524 – 2526;
b) S. Kim, C. J. Lim, C. Song, W.-j. Chung, J. Am. Chem. Soc.
2002, 124, 14306 – 14307; c) S. Lee, C. J. Lim, S. Kim, Bull.
Korean Chem. Soc. 2004, 25, 1611 – 1612.
[6] a) M. S. Kharasch, S. S. Kane, H. C. Brown, J. Am. Chem. Soc.
1942, 64, 1621 – 1624; b) M. S. Kharasch, H. C. Brown, J. Am.
Chem. Soc. 1942, 64, 329 – 333.
Scheme 3. E=CO2Et.
[7] a) J. Fossey, D. Lefort, J. Sorba,
Free Radicals in Organic
standard carbonylation conditions, 18 was isolated in 66%
yield.
In conclusion, we have reported that tin-free radical
carbonylation is successfully achieved using alkyl allyl sulfone
precursors and have developed a highly efficient method for
the synthesis of thiol esters using phenyl benzenethiosulfo-
nate as a trapping agent. This approach provides ready access
to other related carbonyl derivatives.
Chemistry, Wiley, NewYork, 1995; b) S. Hadida, M. S. Super,
E. J. Beckman, D. P. Curran, J. Am. Chem. Soc. 1997, 119, 7406 –
7407.
[8] a) S. Kim, Adv. Synth. Catal. 2004, 346, 19 – 32; b) S. Kim, S. Y.
Jon, Chem. Commun. 1998, 815 – 816.
[9] S. Kim, S. Y. Jon, Tetrahedron Lett. 1998, 39, 7317 – 7320.
[10] a) K. Nagahara, I. Ryu, M. Komatsu, N. Sonoda, J. Am. Chem.
Soc. 1997, 119, 5465 – 5466; b) M. Sugiura, H. Hagio, S.
Kobayashi, Chem. Lett. 2003, 898 – 899.
[11] a) M. Takagi, S. Goto, T. Matsuda, J. Chem. Soc. Chem.
Commun. 1976, 92 – 93; b) M. Takagi, S. Goto, M. Tazaki, T.
Matsuda, Bull. Chem. Soc. Jpn. 1980, 53, 1982 – 1987; c) H.
Nambu, K. Hata, M. Matsugi, Y. Kita, Chem. Commun. 2002,
1082 – 1083; d) H. Nambu, K. Hata, M. Matsugi, Y. Kita, Chem.
Eur. J. 2005, 11, 719 – 727.
[12] For a reviewon acyl radicals, see: C. Chatgilialoglu, D. Crich, M.
Komatsu, I. Ryu, Chem. Rev. 1999, 99, 1991 – 2070.
[13] a) D. Crich, C. Chen, J.-T. Hwang, H. Yuan, A. Papadatos, R. I.
Walter, J. Am. Chem. Soc. 1994, 116, 8937 – 8951; b) I. Ryu, T.
Okuda, K. Nagahara, N. Kambe, M. Komatsu, N. Sonoda, J. Org.
Chem. 1997, 62, 7550 – 7551.
[14] a) A. P. Davis, J. J. Walsh, Tetrahedron Lett. 1994, 35, 4865 –
4869; b) A. P. Davis, J. J. Walsh, Chem. Commun. 1996, 449 –
451; c) Z.-H. Huang, J. Wu, K. D. W. Roth, Y. Yang, D. A. Gae,
J. T. Watson, Anal. Chem. 1997, 69, 137 – 144.
[15] a) A. Haas, J. Fluorine Chem. 1986, 32, 415 – 439; b) T. Billard,
B. R. Langlois, S. Large, D. Anker, N. Roidot, P. Roure, J. Org.
Chem. 1996, 61, 7545 – 7550; c) K. Fujiki, N. Tanifuji, Y. Sasake,
T. Yokoyama, Synthesis 2002, 343 – 348.
[16] K. Nagahara, I. Ryu, N. Kambe, M. Komatsu, N. Sonoda, J. Org.
Chem. 1995, 60, 7384 – 7385.
[17] a) A. L. J. Beckwith, G. Phillipou, A. K. Serelis, Tetrahedron
Lett. 1981, 22, 2811 – 2814; b) T. V. Rajan Babu, Acc. Chem. Res.
1991, 24, 139 – 145; c) S. Kim, I. Y. Lee, J. -Y, Yoon, D. H. Oh, J.
Am. Chem. Soc. 1996, 118, 5138 – 5139.
Experimental Section
Typical procedure: Heptane (12 mL), 4-(prop-2-ene-1-sulfonyl)buty-
ric acid ethyl ester (26 mg, 0.12 mmol), phenyl benzenethiosulfonate
(2d; 45 mg, 0.18 mmol), and V-40 (8 mg, 0.03 mmol) were placed in a
50-mL stainless steel autoclave. The autoclave was sealed and purged
with CO (3 10 atm). The autoclave was then pressurized with CO
(95 atm) and heated, with stirring, at 1008C for 18 h. After excess CO
was discharged at room temperature, the solvent was evaporated, and
the residue was purified by column chromatography on silica gel using
ethyl acetate and n-hexane (1:20) as eluant to give 4-phenylsulfanyl-
carbonylbutyric acid ethyl ester (28 mg, 94%). 1H NMR (CDCl3,
400 MHz): d = 1.24 (t, J = 7.1 Hz, 3H), 2.01 (quin, J = 7.3 Hz, 2H),
2.38 (t, J = 7.3 Hz, 2H), 2.72 (t, J = 7.3 Hz, 2H), 4.12 (q, J = 7.1 Hz,
2H), 7.39 ppm (s, 5H); 13C NMR (CDCl3, 100 MHz): d = 14.2, 20.6,
33.0, 42.5, 60.5, 127.6, 129.2, 129.4, 134.5, 172.7, 196.8 ppm; IR
(polymer): n˜ = 749, 1026, 1187, 1442, 1479, 1708, 1735, 1963,
2983 cmÀ1; HRMS [M+] calcd for C13H16O3S: 252.0820; found:
252.0815
Received: May 11, 2005
Published online: August 31, 2005
Keywords: carbonylation · radical reactions ·
.
[18] a) S. Tsunoi, I. Ryu, S. Yamasaki, H. Fukushima, M. Tanaka, M.
Komatsu, N. Sonoda, J. Am. Chem. Soc. 1996, 118, 10670 –
10671; b) I. Ryu, S. Krrimerman, F. Araki, S. Nishitani, Y.
Oderaotoshi, S. Minakata, M. Komatsu, J. Am. Chem. Soc. 2002,
124, 3812 – 3813.
radicals · synthetic methods
[1] For reviews, see: a) I. Ryu, N. Sonoda, Angew. Chem. 1996, 108,
1140 – 1157; Angew. Chem. Int. Ed. Engl. 1996, 35, 1050 – 1066;
b) I. Ryu, N. Sonoda, D. P. Curran, Chem. Rev. 1996, 96, 177 –
194; c) I. Ryu, Chem. Soc. Rev. 2001, 30, 16 – 25; d) I. Ryu, Chem.
Rec. 2002, 249 – 258.
[2] For a review, see: P. A. Baguley, J. C. Walton, Angew. Chem.
1998, 110, 3272 – 3283; Angew. Chem. Int. Ed. 1998, 37, 3072 –
3082, and references therein.
[3] a) B. Quiclet-Sire, S. Z. Zard, J. Am. Chem. Soc. 1996, 118, 1209 –
1210; b) F. L. Guyader, B. Quiclet-Sire, S. Seguin, S. Z. Zard, J.
Am. Chem. Soc. 1997, 119, 7410 – 7411; c) J. Xiang, W. Jiang, J.
Gong, P. L. Fuchs, J. Am. Chem. Soc. 1997, 119, 4123 – 4129; d) B.
Quiclet-Sire, S. Seguin, S. Z. Zard, Angew. Chem. 1998, 110,
6186
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 6183 –6186