synthesis of 4-imino-4H-3,1-benzoxazine (8) involving an
aldehyde 6, an amine 7, and isonitrile 5 (Scheme 1). 4-Imino-
Scheme 1
Figure 1. Functionalized isocyanides.
4H-3,1-benzoxazines have previously been prepared by
dehydrative cyclization of N-acylanthranilamides16 and are
readily rearranged to the quinazolin-4-one, a privileged
structure in medicinal chemistry.17-21 Although little is know
about the biological activity of iminobenzoxazine, a recent
patent dealing with the application of 4-imino-4H-3,1-
benzoxazine (8) in crop science to control invertebrate pests
is noteworthy.22
and toluenesulfonylmethyl isocyanide (2, TosMIC),7 devel-
oped by Scho¨llkopf and Van Leusen, respectively, are notable
examples and have found wide applications in the synthesis
of diverse class of heterocycles. Reaction sequences utilizing
these two synthons are in general initiated by the nucleophilic
addition of the R-carbanion, rather than the divalent carbon
of the isonitrile as in the P-3CR and U-4CR, onto the
respective electrophiles.8
Using isonitrile 5a (X ) H, R1 ) n-Bu), heptanal 6a, and
morphiline 7a as test substrates (Scheme 2), we performed
We have been working on the chemistry of R-isocyano
acetamide (3)9 and R-isocyanoacetic acid (4).10 On the basis
of the unique reactivities of these two synthons, a number
of multicomponent reactions have since been developed for
syntheses of polyheterocycles11,12 and macrocycles13 and for
conducting the functional group transformations.14 In all of
these transformations, the reaction sequence based on 3 and
4 is triggered by the nucleophilicity of the isonitrile carbon
that differentiates them from compounds 1 and 2. As a logical
extension of this work and in conjuction with our interests
in the synthesis of benzofused heterocycles, we started
investigating the chemical reactivity of unknown 2-isocyano
benzamide (5)15 and report herein a new three-component
Scheme 2
(7) Van Leusen, D.; Van Leusen, A. M. Org. React. 2001, 57, 417-
666.
a survey of the reaction conditions. In the event, stirring a
toluene solution of 5a, 6a, and 7a in the presence of
ammonium chloride at room temperature for 8 h resulted in
the formation of iminobenzoxazine 8a (R1 ) n-Bu, R2 )
n-C6H13, NR3R4 ) morpholinyl) in 78% yield. Heating the
reaction to 60 °C increased the reaction rate and conversion
(8) For examples, see: (a) Suzuki, M.; Nunami, K.-I.; Moriya, T.;
Matsumoto, K.; Yoneda, N. J. Org. Chem. 1978, 26, 4933-4935. (b) Bon,
R. S.; Van Vliet, B.; Sprenkels, N. E.; Schmitz, R. F.; De Kanter, F. J. J.;
Stevens, C. V.; Swart, M.; Bickelhaupt, F. M.; Groen, M. B.; Orru, R. V.
A. J. Org. Chem. 2005, 70, 3542-3553 and references therein.
(9) Sun, X.; Janvier, P.; Zhao, G.; Bienayme´, H.; Zhu, J. Org. Lett. 2001,
3, 877-880. (b) Janvier, P.; Sun, X.; Bienayme´, H.; Zhu, J. J. Am. Chem.
Soc. 2002, 124, 2560-2567. (c) Fayol, A.; Housseman, C.; Sun, X.; Janvier,
P.; Bienayme´, H.; Zhu, J. Synthesis 2005, 161-165.
(15) We cannot find this isonitrile from SciFinder and Beilstein databases.
We prepared it by dehydration of N-formylanthranilamide (POCl3, CH2Cl2,
0 °C; see Supporting Information).
(16) Mazurkiewicz, R. Monatsh. Chem. 1989, 120, 973-980.
(17) Molina, p.; Alajarin, M.; Vidal, A.; Foces-Foces, M.; Cano, F. H.
Tetrahedron 1989, 45, 4263-4286.
(18) (a) Wang, H.; Ganesan, A. J. Org. Chem. 1998, 63, 2432-2433.
(b) Wang, H.; Ganesan, A. J. Org. Chem. 2000, 65, 1022-1030. (c) Wang,
H.; Ganesan, A. J. Comb. Chem. 2000, 2, 186-194.
(19) (a) He, F.; Snider, B. B. J. Org. Chem. 1999, 64, 1397-1399. (b)
Snide, B. B.; Zeng, H. Heterocycles 2003, 61, 173-182.
(20) (a) Freed, J. D.; Hart, D. J.; Magomedov, N. A. J. Org. Chem. 2001,
66, 839-852. (b) Hart, D. J.; Magomedov, N. A. J. Am. Chem. Soc. 2001,
123, 5892-5899.
(21) Liu, J.-F.; Lee, J. Dalton, A. M.; Bi, G.; Baldino, C. M.; MCElory,
E.; Brown, M. Tetrahedron Lett. 2005, 46, 1241-1244. (b) Liu, J.-F.; Ye,
P.; Zhang, B.; Bi, G.; Sargent, K.; Yu, L.; Yohannes, D.; Baldino, C. M. J.
Org. Chem. 2005, 70, 6339-6345.
(22) Selby, T. P.; Birch, L. D. WO Patent 03/032731 A1, 2003; Chem
Abstr. 2003, 138:316207.
(10) (a) Bonne, D.; Dekhane, M.; Zhu, J. Org. Lett. 2004, 6, 4771-
4774. See also: (b) Bossio, R.; Marcaccini, S.; Paoli, P.; Pepino, R. Synthesis
1994, 672-674.
(11) (a) Gonza´lez-Zamora, E.; Fayol, A.; Bois-Choussy, M.; Chiaroni,
A.; Zhu, J. J. Chem. Soc., Chem. Commun. 2001, 1684-1685. (b) Ga´mez-
Montan˜o, R.; Zhu, J. J. Chem. Soc., Chem. Commun. 2002, 2448-2449.
(c) Janvier, P.; Bienayme´, H.; Zhu, J. Angew. Chem., Int. Ed. 2002, 41,
4291-4294. (d) Ga´mez-Montan˜o, R.; Gonza´lez-Zamora, E.; Potier, P.; Zhu,
J. Tetrahedron 2002, 58, 6351-6358. (e) Fayol, A.; Zhu, J. Angew. Chem.,
Int. Ed. 2002, 41, 3633-3635. (f) Fayol, A.; Zhu, J. Org. Lett. 2004, 6,
115-118. (g) Fayol, A.; Zhu, J. Org. Lett. 2005, 7, 239-242. (h) Tron, G.
C.; Zhu, J. Synlett 2005, 532-534.
(12) Wang, Q.; Xia, Q.; Ganem, B. Tetrahedron Lett. 2003, 44, 6825-
6827. (b) Wang, Q.; Ganem, B. Tetrahedron Lett. 2003, 44, 6829-6832.
(13) (a) Zhao, G.; Sun, X.; Bienayme´, H.; Zhu, J. J. Am. Chem. Soc.
2001, 123, 6700-6701. (b) Janvier, P.; Bois-Choussy, M.; Bienayme´, H.;
Zhu, J. Angew. Chem., Int. Ed. 2003, 42, 811-814.
(14) Bonne, D.; Dekhane, M.; Zhu, J. J. Am. Chem. Soc. 2005, 127,
6926-6927.
5286
Org. Lett., Vol. 7, No. 23, 2005