Scheme 1. Serendipitous R-Pyrone Formation
Scheme 2. Proposed Mechanism for R-Pyrone Formation
4 was treated with oxoammonium salt 7 (Bobbitt’s Reagent,
Scheme 1, inset),11 R-pyrone12,13 8 was obtained unexpectedly
in 85% yield.14
A proposed mechanism for the formation of R-pyrone 8
involves initial oxidation of primary alcohol 4 to aldehyde
5 followed by oxa-electrocyclization to afford 2H-pyrans 6/6′
(Scheme 2). The electrophilic oxoammonium salt 7 may then
react with the 2H-pyran15 moiety, resulting in intermediate
10 which may undergo elimination generating pyrylium salt
11. Alternate pathways for pyrylium generation may entail
an ene-type mechanism16 or direct hydride abstraction.17,18
Nucleophilic hydroxylamine 9, the reduced form of 7
generated in the initial oxidation step (4 f 5),19 may then
condense20 with 11, resulting in formation of intermediate
12 followed by elimination21 to provide the observed
R-pyrone 8. Mehta and Roy8 have proposed an alternate
mechanism for a related R-pyrone formation involving initial
oxidation with an oxoammonium species to a carboxylic acid
followed by electrophilic cyclization-elimination.
On the basis of the oxa-electrocyclization/oxidative R-py-
rone formation process, a retrosynthetic analysis of EI-1941-2
was developed (Scheme 3). EI-1941-2 (1) may be derived
(5) (a) Li, C.; Lobkovsky, E.; Porco, J. A., Jr. J. Am. Chem. Soc. 2000,
122, 10484. (b) Li, C.; Pace, E.; Liang, M.-C.; Lobkovsky, E.; Gilmore, T.
D.; Porco, J. A., Jr. J. Am. Chem. Soc. 2001, 123, 11308. (c) Li, C.; Bardhan,
S.; Pace, E. A.; Liang, M.-C.; Gilmore, T. D.; Porco, J. A., Jr. Org. Lett.
2002, 4, 3267. (d) Li, C.; Johnson, R. P.; Porco, J. A., Jr. J. Am. Chem.
Soc. 2003, 125, 5095. (e) Li, C.; Porco, J. A., Jr. J. Am. Chem. Soc. 2004,
126, 1310. (f) Li, C.; Porco, J. A., Jr. J. Org. Chem. 2005, 70, 6053.
(6) (a) Marco-Contelles, J.; Molina, M. T.; Anjum, S. Chem. ReV. 2004,
104, 2857. (b) Miyashita, K.; Imanishi, T. Chem. ReV. 2005, 105, 4515.
(7) (a) Shoji, M.; Uno, T.; Kakeya, H.; Onose, R.; Shiina, I.; Osada, H.;
Hayashi, Y. J. Org. Chem. 2005, 70, 9905. For synthesis of ent-EI-1941-2
and epi-ent-EI-1941-2, see: (b) Shoji, M.; Uno, T.; Hayashi, Y. Org. Lett.
2004, 6, 4535.
Scheme 3. Retrosynthetic Analysis for EI-1941-2
(8) Mehta, G.; Roy, S. Tetrahedron Lett. 2005, 46, 7927.
(9) For recent, elegant examples of 6π-oxa-electrocyclization in complex
natural product synthesis, see: (a) Malerich, J. P.; Maimone, T. J.; Elliott,
G. I.; Trauner, D. J. Am. Chem. Soc. 2005, 127, 6276. (b) Tambar, U. K.;
Kano, T.; Stoltz, B. M. Org. Lett. 2005, 7, 2413. (c) Shoji, M.; Imai, H.;
Mukaida, M.; Sakai, K.; Kakeya, H.; Osada, H.; Hayashi, Y. J. Org. Chem.
2005, 70, 79. (d) Kurdyumov, A. V.; Hsung, R. P. J. Am. Chem. Soc. 2006,
128, 6272.
(10) Recent reviews of 6π-oxa-electrocyclization: (a) Beaudry, C. M.;
Malerich, J. P.; Trauner, D. Chem. ReV. 2005, 105, 4757. (b) Hsung, R. P.;
Kurdyumov, A. V.; Sydorenko, N. Eur. J. Org. Chem. 2005, 70, 23.
(11) (a) Ma, Z.; Bobbitt, J. M. J. Org. Chem. 1991, 56, 6110. (b)
Merbouh, N.; Bobbitt, J. M.; Brueckner, C. Org. Prep. Proc. Int. 2004, 36,
1. (c) Bobbitt, J. M.; Merbouh, N. Org. Synth. 2005, 82, 80.
(12) For a recent review of R-pyrone formation and reactivity, see: Ram,
V. J.; Srivastava, P. Curr. Org. Chem. 2001, 5, 571.
from hydrogenation of the C5-C6 olefin of R-pyrone 13.
Compound 13 may be prepared by R-pyrone formation from
diol 14 utilizing the tandem oxa-electrocyclization/oxidation
protocol. Epoxyquinol 14 may result from global deprotec-
tion of 15, followed by selective reduction of the resulting
C2 carbonyl. The unsaturated side chain in 14 may be
installed by Stille cross-coupling of vinyl bromide 15 and
the corresponding E-vinylstannane. The antipode of 15 has
been previously reported by our laboratory.5b
(13) See Supporting Information for experimental details.
(14) Li, C. Studies Toward the Synthesis of Torreyanic Acid and Related
Epoxyquinoid Natural Products. Ph.D. Thesis, Boston University, 2005.
(15) For 1,2-addition of oxoammonium salts to electron-rich olefins,
see: Takata, T.; Tsujino, Y.; Nakanishi, S.; Nakamura, K.; Yoshida, E.;
Endo, T. Chem. Lett. 1999, 9, 937.
The synthesis was initiated beginning with the known
quinone monoketal 16 (Scheme 4). Tartrate-mediated nu-
(16) Pradhan, P. P.; Bailey, W. F.; Bobbitt, J. M. Abstracts of Papers,
230th ACS National Meeting, Washington, DC, United States, August 28-
September 1, 2005; ORGN abstract 109.
(17) Breton, T.; Liaigre, D.; Belgsir, E. M. Tetrahedron Lett. 2005, 46,
2487.
(18) For the reaction of 2H-pyrans with trityl perchlorate to afford
pyrylium salts, see: Roedig, A.; Renk, H. A.; Schaal, V.; Scheutzow, D.
Chem. Ber. 1974, 107, 1136.
(19) (a) Bobbitt, J. M.; Flores, M. C.; Ma, Z.; Tang, H. Heterocycles
1990, 30, 1131. (b) Ma, Z. Chiral and Achiral Oxoammonium Salts:
Syntheses and Applications. Ph.D. Thesis, University of Connecticut, 1991.
(20) Patil, N. T.; Yamamoto, Y. J. Org. Chem. 2004, 69, 5139.
(21) For the related decomposition of R-(2,2,6,6-tetramethylpiperidinyl-
oxy)ketone to a Vic-diketone, see: Liu, Y. C.; Ren, T.; Guo. Q. X. Chin.
J. Chem. 1996, 14, 252.
2848
Org. Lett., Vol. 8, No. 13, 2006