Page 5 of 7
Chemical Science
Please do not adjust margins
Journal Name
ARTICLE
H
tBu
Conclusion
DOI: 10.1039/D0SC05952H
O
Cu
Nu
PivO
H
Cu
H
O
8
H
N
CnH2n Nu
N
In summary, by integrating photochemical generation of
H
H
Troc
Nu
Troc
2am 2ar
-
H
H
amidyl radicals with Cu-mediated β-H elimination of alkyl
radical via a tandem photoredox and copper catalysis, we
developed an intermolecular oxidative amination of
unactivated alkenes. The method can be used to synthesize a
wide range of allylic amines, from readily available alkenes, with
high functional group tolerance. The work broadens the scope
of oxidative amination of alkenes via amidyl radical addition.
H
leading to elimination
-NuH =-NHTs n=2
leading to cyclization
-NuH =-NHTs n=3
NHTroc
-NuH =-NHTs n=1
Troc
HN
N
NHTroc
N
NHTs
Ts
Ts
5am
54%
3an
33%
5ao
70%
-NuH =-OH n=1
-NuH =-OH n=2
-NuH =-OH n=3
Troc
HN
HO
NHTroc
Conflicts of interest
There are no conflicts to declare.
Troc
O
HN
Troc
+
OH
HN
O
ap
3aq
3ar
5ar
68%
59% 5
71%
22%
Scheme 3. Reactions of substrates with a tethered nucleophilic group: Competition
between cyclization and elimination. Conditions: same as Table 1, Entry 9.
Acknowledgements
Conditions:
This work is supported by the EPFL. We thank Zhikun Zhang and
Abdusalom Suleymanov for their help in fluorescence
quenching experiments.
Table 1, Entry 9
+
N
Troc
+
1
Troc
(3)
N
H
Troc
PivO
NH
Cu
2as
3 eq.
6as
62%,
3as
17%
H1
8as
H1
Taking into account the above results, we proposed a plausible Notes and references
catalytic cycle (Scheme 4). The reaction starts from the
1
a) R. I. McDonald, G. S. Liu and S. S. Stahl, Chem. Rev., 2011,
oxidative quenching of the excited photocatalyst by 1, which
generates the amidyl radical 9 while releasing a carboxylate.
The addition of 9 to the alkene 2 leads to the alkyl radical 10,
which is then trapped by a CuII-pivolate species to give a formal
CuIII-alkyl species 8. The latter undergoes elimination of β-H to
form the allylic amine 3 and a CuI species13 which is oxidized
back to the starting CuII by the oxidized photocatalyst IrIV. Note
that the alkene formation has an exclusive E-selectivity. This
selectivity can be attributed to the higher stability of the A
conformer over the B conformer of the Cu-alkyl intermediate
(Scheme 4, right).13a Based on precedents,13b,13e we propose
that the elimination step is assisted by the pivolate ligand. To
explain the regioselectivity for H elimination in 8, we propose
that the coordination of the Troc group to CuIII prevents the H2
to be accessed by the carboxylate so that elimination of H1
dominates.13b The influence of intramolecular coordination to
the reaction selectivity was evidenced by the products of
several substrates (e.g., 2al, 2as).
111, 2981-3019. b) S. R. Chemler, S. D. Karyakarte and Z. M.
Khoder, J. Org. Chem., 2017, 82, 11311-11325. c) J. H. Lee, S.
Choi and K. B. Hong, Molecules, 2019, 24, 2634.
a) M. Johannsen and K. A. Jorgensen, Chem. Rev., 1998, 98,
1689-1708. b) Y. Shen, W. J. Liang, Y. N. Shi, E. J. Kennelly and
D. K. Zhao, Nat. Prod. Rep., 2020, 37, 763-796. c) E. Vitaku, D.
T. Smith and J. T. Njardarson, J. Med. Chem., 2014, 57, 10257-
10274.
a) S. A. Reed and M. C. White, J. Am. Chem. Soc., 2008, 130,
3316-3318. b) G. S. Liu, G. Y. Yin and L. Wu, Angew. Chem. Int.
Ed., 2008, 47, 4733-4736.c) S. A. Reed, A. R. Mazzotti and M.
C. White, J. Am. Chem. Soc., 2009, 131, 11701-11706.
a) D. G. Kohler, S. N. Gockel, J. L. Kennemur, P. J. Waller and
K. L. Hull, Nat. Chem., 2018, 10, 333-340. b) J. L. Brice, J. E.
Harang, V. I. Timokhin, N. R. Anastasi and S. S. Stahl, J. Am.
Chem. Soc., 2005, 127, 2868-2869.
a) H. H. Lei and T. Rovis, J. Am. Chem. Soc., 2019, 141, 2268-
2273. b) N. S. Dolan, R. J. Scamp, T. Yang, J. F. Berry and J. M.
Schomaker, J. Am. Chem. Soc., 2016, 138, 14658-14667. c) T.
Knecht, S. Mondal, J. H. Ye, M. Das and F. Glorius, Angew.
Chem. Int. Ed., 2019, 58, 7117-7121.
2
3
4
5
6
7
D. C. Blakemore, L. Castro, I. Churcher, D. C. Rees, A. W.
Thomas, D. M. Wilson and A. Wood, Nat. Chem., 2018, 10,
383-394.
L
H
Troc
2
Cu H
NH
R
A
H
H
HN
O
a) J. Davies, N. S. Sheikh and D. Leonori, Angew. Chem. Int. Ed.,
2017, 56, 13361-13365. b) L. ElKaim and C. Meyer, J. Org.
Chem., 1996, 61, 1556-1557. c) G. J. Choi and R. R. Knowles, J.
Am. Chem. Soc., 2015, 137, 9226-9229. d) P. Xiong, H. H. Xu
and H. C. Xu, J. Am. Chem. Soc., 2017, 139, 2956-2959. e) X. L.
Yi and X. L. Hu, Angew. Chem. Int. Ed., 2019, 58, 4700-4704. f)
L. Angelina, J. Davies, M. Simonetti, L. M. Sanz, N. S. Sheikh
and D. Leonori, Angew. Chem. Int. Ed., 2019, 58, 5003-5007.
a) X. D. An, Y. Y. Jiao, H. Zhang, Y. X. Gao and S. Y. Yu, Org.
Lett., 2018, 20, 401-404. b) D. H. Wang, L. Q. Wu, F. Wang, X.
L. Wan, P. H. Chen, Z. Y. Lin and G. S. Liu, J. Am. Chem. Soc.,
2017, 139, 6811-6814. c) H. W. Zhang, W. Y. Pu, T. Xiong, Y. Li,
X. Zhou, K. Sun, Q. Liu and Q. Zhang, Angew. Chem. Int. Ed.,
2013, 52, 2529-2533. d) K. Miyazawa, T. Koike and M. Akita,
Chem.-Eur. J., 2015, 21, 11677-11680.
Troc
O
R
Troc
H
N
R
HN
H
Troc
vs
9
10
L
SET
- 4-CNC6H4CO2
Troc
Cu
H
1
NH
B
IriV
OPiv
CuII
NC
H
H
R
*IrIII
H2
R
H1
O
SET
HN
Cl3C
CuIII
O
8
O
O
tBu
CuI
8
IrIII
OPIv
hv
+ OPiv
-HOPiv
Troc
N
R
H
3
Scheme 4. The proposed reaction mechanism.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins