Sequential [3+2] Cycloaddition/Air Oxidation Reactions
Figure 1. Proposed mechanism for the oxidation of alkynes mediated by the triazoloyl ion.
the NMR Facility at Madurai Kamaraj University and Orchid Re-
search Laboratory, Ltd., for providing facilities.
Conclusions
A simple, environmentally benign, metal-free method for
the oxidative cleavage of alkynes to the corresponding car-
boxylic acids and aldehydes was developed. This reaction
proceeds by neighboring group participation of the triaz-
oloyl ion to the alkyne.
[1] D. G. Lee, V. S. Chang, J. Org. Chem. 1979, 44, 2726–2730.
[2] a) C. Mukai, M. Miyakawa, M. Hanaoka, Synlett 1994, 165–
166; b) W. P. Griffith, A. G. Shoair, M. Suriaatmaja, Synth.
Commun. 2000, 30, 3091–3095; c) J. Cornely, L. M. S. Ham,
D. E. Meade, V. Dragojlovic, Green Chem. 2003, 5, 34–37; d)
D. Yang, F. Chen, Z. M. Dong, D. W. Zhang, J. Org. Chem.
2004, 69, 2221–2223.
[3] F. P. Ballistreri, S. Failla, E. Spina, G. A. Tomaselli, J. Org.
Chem. 1989, 54, 947–949.
[4] Z. L. Zhu, J. H. Espenson, J. Org. Chem. 1995, 60, 7728–7732.
[5] S. Samanta, L. Adak, R. Jana, G. Mostafa, H. M. Tuononen,
B. C. Ranu, S. Goswami, Inorg. Chem. 2008, 47, 11062–11070.
[6] B. C. Ranu, S. Bhadra, L. Adak, Tetrahedron Lett. 2008, 49,
2588–2591.
[7] A. Banerjee, B. Hazra, A. Bhattacharya, S. Banerjee, G. C.
Banerjee, S. Sengupta, Synthesis 1989, 765–766.
[8] W. B. Sheats, L. K. Olli, R. Stout, J. T. Lundeen, R. Justus,
W. G. Nigh, J. Org. Chem. 1979, 44, 4075–4078.
[9] A. Wang, H. Jiang, J. Am. Chem. Soc. 2008, 130, 5030–5031.
[10] T. M. Shaikh, F. E. Hong, Adv. Synth. Catal. 2011, 353, 1491–
1496.
[11] S. Enthaler, ChemCatChem 2011, 3, 1929–1934.
[12] S. Hatakeyama, N. Washida, H. Akimoto, J. Phys. Chem. 1986,
90, 173–178.
[13] L. Y. Yeung, M. J. Pennino, A. M. Miller, M. J. Elrod, J. Phys.
Chem. A 2005, 109, 1879–1889.
[14] C. F. Su, W. P. Hu, J. K. Vandavasi, C. C. Liao, C. Y. Hung,
J. J. Wang, Synlett 2012, 2132–2136.
Experimental Section
General Procedure for the Synthesis of Triazolecarboxylic Acids 5
from 1: In an open flask, a mixture of bisalkyne 1 (150 mg, 1 equiv.)
and sodium azide (1 equiv.) in DMF (15 mL) was stirred at room
temperature for 0.5 h and then at 80 °C for 1 h. The reaction mix-
ture was poured into cold water and extracted with ethyl acetate.
The mass obtained after evaporation of ethyl acetate was purified
by column chromatography (hexane/ethyl acetate) to obtain benzal-
dehyde. The aqueous layer was acidified with dilute hydrochloric
acid (pH 2 to 3) and then extracted with methylene dichloride. The
organic layer was washed with brine solution, dried with anhydrous
sodium sulfate, and concentrated to afford 5 in pure form.
2-(5-Phenethyl-2H-1,2,3-triazole-4-carbonyl)benzoic Acid (5a): Pale
yellow solid, m.p. 170–171 °C. IR (KBr): ν = 3435, 3172, 3060,
˜
3022, 1681, 1666, 1598, 1567, 1489, 1453 cm–1. 1H NMR
(400 MHz, [D6]DMSO): δ = 2.98 (t, J = 8.2 Hz, 2 H, -CH2), 3.24
(t, J = 8.2 Hz, 2 H, -CH2), 7.20–7.32 (m, 5 H, Ar-H), 7.44–7.50
(m, 1 H, Ar-H), 7.55–7.71 (m, 2 H, Ar-H), 7.93 (t, J = 7.4 Hz, 1
H, Ar-H), 13.06 (br. s, 1 H, -COOH), 15.2 (br. s, 1 H, -NH) ppm.
13C NMR (100 MHz, [D6]DMSO): δ = 24.5, 33.7, 125.9, 126.1,
127.6, 128.3, 128.4, 129.3, 129.8, 130.5, 130.7, 132.0, 140.7, 141.7,
167.3, 190.8 ppm. C18H15N3O3 (321.33): calcd. C 67.28, H 4.71, N
13.08; found C 67.35, H 4.73, N 13.12. MS (ESI–): m/z = 322.1
[C18H15N3O3 + H]+.
[15] K. Sakthivel, K. Srinivasan, Eur. J. Org. Chem. 2011, 2781–2484.
[16] a) J. E. Hein, J. C. Tripp, L. B. Krasnova, K. B. Sharpless, V. V.
Fokin, Angew. Chem. 2009, 121, 8162–8165; Angew. Chem. Int.
Ed. 2009, 48, 8018–8021; b) W. Qian, D. Winternheimer, J.
Allen, Org. Lett. 2011, 13, 1682–1685; c) T. Ramana, T. Punni-
yamurthy, Chem. Eur. J. 2012, 18, 13279–13283.
[17] A. V. Gulevskaya, S. V. Dang, A. S. Tyaglivy, A. F. Pozharskii,
O. N. Kazheva, A. N. Chekhlov, O. A. Dyachenko, Tetrahedron
2010, 66, 146–151.
Supporting Information (see footnote on the first page of this arti-
cle): Synthesis of the key starting materials 1, 3, and 7 and copies
1
of the H NMR and 13C NMR spectra and other data for 1, 3, 5,
[18] J. D. Tovar, T. M. Swager, J. Org. Chem. 1999, 64, 6499–6504.
[19] N. T. Patil, N. K. Pahadi, Y. Yamamoto, J. Org. Chem. 2005,
70, 10096–10098.
7, and X.
[20] M. J. Crawford, K. Karaghiosoff, T. M. Klapötke, F. A. Mar-
tin, Inorg. Chem. 2009, 48, 1731–1743.
Acknowledgments
Received: March 25, 2013
The authors thank the Department of Science and Technology
(DST), New Delhi, for assistance under the IRHPA program, and
Published Online: May 16, 2013
Eur. J. Org. Chem. 2013, 3974–3977
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3977