Shi et al.
TABLE 2. Kumada Reaction of Compounds 2 (0.3 mmol)
SCHEME 2. Mechanism for Isomerization of the
Double Bond in the Coupling Products
entry
R
yield, %a
1
2
3
4
5
C6H5 2a
9a, 84
9b, 87
9c, 92
9d, 57
9e, 72
p-CH3C6H4 2b
p-CH3OC6H4 2c
p-ClC6H4 2d
p-FC6H4 2e
a Isolated yields.
As for the Heck reaction, it was usually performed at
high temperature except when using phase-transfer
catalyst at room temperature, known as Jeffery’s condi-
tions.13 We believe that the phenylchalcogenyl group in
compounds 2 or 3 contributes to this effective Heck
reaction at room temperature in most cases via an
intramolecular chelation promotion as we proposed in our
previous work.8
Next, we also examined the palladium-catalyzed Ku-
mada reaction14 of 2-iodo-4-(phenylchalcogenyl)-1-butenes
2a-e (0.3 mmol) with phenylmagnesium bromide (0.4
mmol) in diethyl ether at room temperature. In general,
these reactions proceeded smoothly under mild conditions
(room temperature) to afford the corresponding coupling
products 2-phenyl-4-(phenylchalcogenyl)-1-butenes 9 in
moderate or good to high yields in the presence of Pd-
(OAc)2 (1.5 mol %) within 3 h. The results are sum-
marized in Table 2.
In addition, using 1,1-diphenyl-2-iodo-4-(phenylsele-
nyl)-1-butene 2a (0.3 mmol) as substrate, we examined
the Suzuki reaction15 and the Negishi reaction16 with
phenylboronic acid (0.3 mmol) and benzylzinc bromide
(0.4 mmol) in THF, respectively, and the results are
corresponding coupling products 7d and 7e were obtained
in good yields at higher temperature (80 °C) (Table 1,
entries 4 and 5). According to the mechanism of oxidative
addition of vinyl halides to metal complex,11 the electron-
withdrawing group on the benzene rings decreased the
electron density of the carbon-carbon double bond, so
that the rate of the oxidative addition was reduced
relatively and a higher temperature was therefore re-
quired in the oxidative addition process. When acryloni-
trile, a weak nucleophilic compound, was utilized in this
reaction, higher temperature (80 °C) was also required
to give the corresponding product 7l in good yield (Table
1, entry 15).
For unsymmetrical compounds 2f-i, which are the
Z-isomers, the corresponding Heck reaction products 7f-i
were obtained as mixtures of E,Z- and E,E-isomers in
different ratios (Table 1, entries 8-11). The products of
E,Z- and E,E-isomeric mixtures of 7f-h are inseparable
by silica gel flash column chromatography although E,Z-
and E,E-7i could be separated by silica gel flash column
chromatography. The isomerization of the double bond
might be induced by the rearrangement of a certain
intermediate that has been proposed by Heck and co-
workers before (Scheme 2).12 The hydridopalladium
halide π complex A may form an allylic, σ derivative B,
which will go on to a π-allylic palladium complex C with
the allylic double bond. The π-allylic complex C, unfor-
tunately, rapidly equilibrates isomers C and D through
rotating σ forms. This causes loss of stereochemistry and
the product ultimately formed by the hydridopalladium
halide elimination and dissociation process will be the
isomer formed from the most stable π-allylic complex.
(13) (a) Jeffery, T. Chem. Commun. 1984, 1287. (b) Jeffery, T.
Tetrahedron Lett. 1985, 26, 2667. (c) Jeffery, T. Synthesis 1987, 70.
(14) (a) Tamao, K.; Sumitani, K.; Kiso, Y.; Zembayashi, M.; Fujioka,
A.; Kodma, S.-I.; Nakajima, I.; Minato, A.; Kumada, M. Bull. Chem.
Soc. Jpn. 1976, 49, 1958. For some more recent related papers, please
see: (b) Huang, J.; Nolan, S. P. J. Am. Chem. Soc. 1999, 121, 9889
and references therein. (c) Li, G. Y. J. Organomet. Chem. 2002, 653,
63. (d) Anctil, E. J.-G.; Snieckus, V. J. Organomet. Chem. 2002, 653,
150. (e) Banno, T.; Hayakawa, Y.; Umeno, M. J. Organomet. Chem.
2002, 653, 288. (f) Tasler, S.; Lipshutz, B. H. J. Org. Chem. 2003, 68,
1190. (g) Yang, L.-M.; Huang, L.-F.; Luh, T.-Y. Org. Lett. 2004, 6, 1461.
(h) Horibe, H.; Fukuda, Y.; Kondo, K.; Okuno, H.; Murakami, Y.;
Aoyama, T. Tetrahedron 2004, 60, 10701. (i) Frisch, A. C.; Rataboul,
F.; Zapf, A.; Beller, M. J. Organomet. Chem. 2003, 687, 403.
(15) (a) Miyaura, N.; Suzuki,A. Chem. Rev. 1995, 95, 2457. (b)
Suzuki, A. J. Organomet. Chem. 1999, 576, 147. For some more recent
related papers, please see: (c) LeBlond, C. R.; Andrews, A. T.; Sun,
Y.; Sowa, J. R., Jr. Org. Lett. 2001, 3, 1555. (d) Collier, P. N.; Campbell,
A. D.; Patel, I.; Raynham, T. M.; Taylor, R. J. K. J. Org. Chem. 2002,
67, 1802. (e) Urawa, Y.; Ogura, K. Tetrahedron Lett. 2003, 44, 271. (f)
Byun, J.-W.; Lee, Y.-S. Tetrahedron Lett. 2004, 45, 1837. (g) Baleiza˜o,
C.; Corma, A.; Garc´ıa, H.; Leyva, A. J. Org. Chem. 2004, 69, 439. (h)
Dubbaka, S. R.; Vogel, P. Org. Lett. 2004, 6, 95. (i) Dai, M.-J.; Liang,
B.; Wang, C.-H.; Chen, J.-H.; Yang, Z. Org. Lett. 2004, 6, 221. (j)
Bedford, R. B.; Hazelwood, S. L.; Horton, P. N.; Hursthouse, M. B.
Dalton Trans. 2003, 4164. (k) McLachlan, F.; Mathews, C. J.; Smith,
P. J.; Welton, T. Organometallics 2003, 22, 5350. (l) Conlon, D. A.;
Pipik, B.; Ferdinand, S.; LeBlond, C. R.; Sowa, J. R., Jr.; Izzo, B.;
Collins, P.; Ho, G.-J.; Williams, J. M.; Shi, Y.-J.; Sun, Y.-K. Adv. Synth.
Catal. 2003, 345, 931. (m) Wang, A.-E.; Zhong, J.; Xie, J.-H.; Li, K.;
Zhou, Q.-L. Adv. Synth. Catal. 2004, 346, 595.
(11) Rajaram, J.; Pearson, R. G.; Ibers, J. A. J. Am. Chem. Soc. 1974,
96, 2103.
(12) The mechanism for the isomerization of the double bond in the
Heck coupling reaction has been proposed already by Heck and co-
workers (see Scheme 2). (a) Dieck, A.; Heck, R. F. J. Org. Chem. 1975,
40, 1083. (b) Kim, J. I.; Patel, B. A.; Heck, R. F. J. Org. Chem. 1981,
46, 1067.
(16) (a) Negishi, E.-I.; Baba, S. J. Chem. Soc., Chem. Commun. 1976,
596. (b) Negishi, E.-I. Acc. Chem. Res. 1982, 15, 340. (c) Zeng, F.;
Negishi, E. Org. Lett. 2001, 3, 719. (d) Fang, T.-Q.; Hanan, G. S. Synlett
2003, 852. (e) Tews, D.; Gaede, P. E. Tetrahedron Lett. 2004, 45, 9029.
10422 J. Org. Chem., Vol. 70, No. 25, 2005