C O M M U N I C A T I O N S
Table 1. Alkyne Hydrothiolation with Alkyl Thiols Using I
apparent with aryl thiols, we anticipate that mechanistic studies
will provide insight into the regioselectivity of this process. In
addition, we are currently exploring the origin of the typically high
selectivity with alkyl thiols relative to aryl thiols. We are also
exploring the use of I in other catalytic processes involving X-H
activation.
Acknowledgment. We thank the following for support of this
research: University of British Columbia (start-up funds), NSERC
(Discovery Grant, Research Tools and Instrumentation Grant), the
Canada Foundation for Innovation (New Opportunities Grant), and
the British Columbia Knowledge Development Fund.
Supporting Information Available: Complete experimental details
for all new compounds. This material is available free of charge via
References
(1) (a) Sulfur Reagents in Organic Synthesis; Academic Press: New York,
1994. (b) PerspectiVes in Organic Chemistry of Sulfur; Elsevier: Am-
sterdam, 1987. (c) Transition Metal Sulfur Chemistry: Biological and
Industrial Significance; Stiefel, E. I., Matsumoto, K., Eds.; ACS Sym-
posium Series 653; American Chemical Society: Washington, DC, 1996.
(2) For recent reviews, see: (a) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem.
ReV. 2004, 104, 3079-3160. (b) Kuniyasu, H. In Catalytic Heterofunc-
tionalization; Togni, A., Gru¨tzmacher, H., Eds.; Wiley-VCH: Weinheim,
Germany, 2001; pp 217-251. (c) Kondo, T.; Mitsudo, T. Chem. ReV.
2000, 100, 3205-3220. (d) Ogawa, A. J. Organomet. Chem. 2000, 611,
463-474.
(3) For recent examples, see: (a) Pearson, W. H.; Lee, I. Y.; Mi, Y.; Stoy, P.
J. Org. Chem. 2004, 69, 9109-9122. (b) Mizuno, H.; Domon, K.; Masuya,
K.; Tanino, K.; Kuwajima, I. J. Org. Chem. 1999, 64, 2648-2656. (c)
Bratz, M.; Bullock, W. H.; Overman, L. E.; Takemoto, T. J. Am. Chem.
Soc. 1995, 117, 5958-5966.
(4) Trost, B. M.; Ornstein, P. J. Org. Chem. 1982, 47, 748-751 and references
therein.
(5) Radical reactions: The Chemistry of the Thiol Group; Patai, S., Ed.;
Wiley: London, 1974; Vol. 2.
(6) Nucleophilic reactions: Truce, W. E.; Hill, H. E.; Boudakian, M. M. J.
Am. Chem. Soc. 1956, 78, 2756-2762.
(7) Metal-catalyzed reactions giving the branched product: (a) Kuniyasu, H.;
Ogawa, A.; Sato, K.-I.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem.
Soc. 1992, 114, 5902-5903. (b) Ba¨ckvall, J.-E.; Ericcson, A. J. Org.
Chem. 1994, 59, 5850-5851. (c) Han, L.-B.; Zhang, C.; Yazawa, H.;
Shimada, S. J. Am. Chem. Soc. 2004, 126, 5080-5081.
(8) Metal-catalyzed reactions giving the linear product: (a) Ogawa, A.; Ikeda,
T.; Kimura, K.; Hirao, T. J. Am. Chem. Soc. 1999, 121, 5108-5114. (b)
Burling, S.; Field, L. D.; Messerle, B. A.; Vuong, K. Q.; Turner, P. J.
Chem. Soc., Dalton Trans. 2003, 4181-4191.
a Reaction conditions: 10 mmol alkyne, 11 mmol thiol, 4 mL of 1:1
DCE:PhCH3, and 0.3 mmol (3 mol %) catalyst, unless otherwise noted.
b Conditions: A ) rt; B ) 20 min at 0 °C, warmed to 20 °C over 1 h; C
) 80 °C, D ) 50 °C. c Isolated yields. d Ar ) CH3OC6H4. e Branched:
linear ratio 19:1. f Branched:linear ratio 12:1. g Yield based on 1H NMR
analysis.
(9) (a) Capella, L.; Montevecchi, P. C.; Navacchia, M. L. J. Org. Chem. 1996,
61, 6783-6789. (b) Galambos, G.; Csokasi, P.; Szantay, C., Jr.; Szantay,
C. Liebigs Ann. 1997, 9, 1969-1978.
(10) (a) Carson, J. F.; Boggs, L. E. J. Org. Chem. 1967, 32, 673-676. (b)
Kondoh, A.; Takami, K.; Yorimitsu, H.; Oshima, K. J. Org. Chem. 2005,
70, 6468-6473.
Table 2. Hydrothiolation of Aryl Alkynes with Aryl Thiols Using I
(11) (a) Katritzky, A. R.; Ramer, W. H.; Ossana, A. J. Org. Chem. 1985, 50,
847-852. (b) Williams, J. R.; Boehm, J. C. Bioorg. Med. Chem. Lett.
1992, 2, 933-936.
(12) Shostakovskii, M. F.; Gracheva, E. P.; Kulbovskaya, N. K. Russ. J. Chem.
1960, 30, 383-388.
(13) For an example of hydrothiolation of highly activated alkynes (Michael
acceptors) using alkyl thiols, see: Koelle, U.; Rietmann, C.; Tjoe, J.;
Wagner, T.; Englert, U. Organometallics 1995, 14, 703-713.
(14) For an example of intramolecular alkyne hydrothiolation with alkyl thiols,
see: McDonald, F. E.; Burova, S. A.; Huffman, L. G. Synthesis 2000, 7,
970-974.
(15) (a) For a recent review of C-H activation, see: Slugovc, C.; Padilla-
Mart´ınez, I.; Sirol, S.; Carmona, E. Coord. Chem. ReV. 2001, 213, 129-
157. (b) Si-H activation (hydrosilylation of ethylene): Trujillo, M. Ph.D.
Thesis, University of Sevilla, 1999. (c) S-H activation: Cˆırcu, V.;
Fernandes, M. A.; Carlton, L. Polyhedron 2003, 22, 3293-3298.
(16) (a) Katayama, H.; Yamamura, K.; Miyaki, Y.; Ozawa, F. Organometallics
1997, 16, 4497-4500. (b) Alvarado, Y.; Busolo, M.; Lo´pez-Linares, F.
J. Mol. Catal. A: Chem. 1999, 142, 163-167. (c) Teuma, E. Loy, M.;
Le Berre, C.; Etienne, M.; Daran, J.-C.; Kalck, P. Organometallics 2003,
22, 5261-5267.
(17) (a) Connelly, N. G.; Emslie, D. J. H.; Geiger, W. E.; Hayward, O. D.;
Linehan, E. B.; Orpen, A. G.; Quayle, M. J.; Rieger, P. H. J. Chem. Soc.,
Dalton Trans. 2001, 670-683. (b) Cˆırcu, V.; Fernandes, M. A.; Carlton,
L. Inorg. Chem. 2002, 41, 3859-3865.
Entrya
RSH
R1
Time (h)
Yield (%)b
A:Bc
1
2
3
4
5
Ph
Ph
Ph
Ph
2
10
2
1.5
23
84
89
90
83
85
6:1
p-CH3OC6H4
o,p-F2C6H3
3.2:1
2.6:1
1.4:1
1.7:1
p-CH3C6H4
p-BrC6H4
Ph
Ph
a Reaction conditions: 10 mmol alkyne, 11 mmol thiol, 4 mL of 1:1
DCE:PhCH3, and 0.3 mmol (3 mol %) catalyst. b Isolated yields. c Trace
amounts of C observed.
In summary, we have found that Tp*Rh(PPh3)2 (I) catalyzes the
hydrothiolation of a range of alkynes with both aryl and alkyl thiols.
The reactions with alkyl thiols proceeded with excellent regio-
selectivity, providing convenient access to branched alkyl vinyl
sulfides, which are difficult to synthesize by other means. Hydro-
thiolation reactions with aryl thiols were less selective, providing
a mixture of branched and linear products. Although no trend is
JA055096H
9
J. AM. CHEM. SOC. VOL. 127, NO. 50, 2005 17615