498
A.Z. El-Sonbati et al. / Spectrochimica Acta Part A 83 (2011) 490–498
[4] M.B. Ferrari, S.G.G. Capacchi, P. Reffo, R. Tarsconi, S. Pinelli, P. Lunghi, Inorg.
Chim. Acta 286 (1999) 134.
[5] A.Z. El-Sonbati, R.M. Issa, A.M. Abd El-Gawad, Spectrochim. Acta A 68 (2007)
134.
[6] A.Z. El-Sonbati, M.A. Diab, M.M. El-Halawany, N.E. Salam, Spectrochim. Acta A
77 (2010) 795.
[7] A.Z. El-Sonbati, M.A. Diab, M.M. El-Halawany, N.E. Salam, Mater. Chem. Phys.
123 (2010) 439.
the ESR parameter on the stereochemistry of Cu(II) polymer com-
plexes. It is important to not that the existence of electron density
enhances on the coordination sites and simultaneously increases
the value of ESR parameters (Tables 4 and 6).
4. Conclusion
[8] M. Weng, L.-F. Wang, Y.-Z. Ligand, Qin-Xi-Li, Trans. Met. Chem. 26 (2001) 307.
[9] N.N. Guleman, S. Rollas, H. Erdeniz, M. Kiraj, J. Pharm. Sci. 26 (2001) 1.
[10] P. Tanasconi, S. Capacchi, G. Pelosi, M. Cornia, R. Albertini, A. Bonati, P.P. Dall
Aglio, P. Lunghi, S. Pinelli, Bioorg. Med. Chem. 8 (2000) 154.
[11] H. Singh, L.D.S. Yadav, S.B.S. Mishra, J. Inorg. Nucl. Chem. 43 (1981) 1701.
[12] N.K. Singh, S.B. Singh, Indian J. Chem. 40A (2001) 1070.
[13] N. Wasi, H.B. Singh, Inorg. Chim. Acta 151 (1988) 287.
[14] P. Souza, M.A. Mendiola, A. Arquero, V. Fernandez, E.G. Puebla, C.R. Valero, Z.
Natureforsch. 49b (1994) 263.
[15] F.M. Belicehi, F. Bisceglie, G. Pelosi, J. Inorg. Biochem. 83 (2001) 169.
[16] T.D. Lucker, B. Venugopal, Metal Toxicity in Mammals, vol. 1, Plenum Press,
New York, 1977.
[17] A.Z. El-Sonbati, M.A. Diab, M.M. El-Halawany, N.E. Salam, Spectrochim. Acta A
77 (2010) 755.
This study has suggested that HLn behaves as a chelating biden-
tate monobasic ligand, bonding through C–O group and nitrogen
atom of the azo group. The CS breathing mode of the ligand is
observed. It remains unaltered in the complexes with absence of
coordinations through the sulphur atom of the CS group. The IR
data reveal that the anions are not binded to the metal ions and the
metal ions do not occupy all the available sites in the metal chelate
due to steric constraints.
The stoichiometric data of Cu(II)/adduct complexes and their
physico-chemical investigations indicate that the probable coordi-
nation number of copper(II) in these complexes is four-coordinate.
Substituents effect on reactivities depend mainly on the rate
controlling step and the nature of the transient specie, while
Hamett’s relationship studies the reactivity trends in ligands and
complexes with the stability, i.e., the lower the stability the higher
the reactivities. Based on Hamett’s relationship, electron withdraw-
ing substituents enhance the stabilities of these complexes owing
to the decrease of electron density at the metal atoms and thus the
increase of the positive charge on the metal. Therefore, this effect
results in decreasing reactivity. In contrast, the electron donating
substituents increase the electron density at the metal, hence lead-
ing to decrease the stability of the metal chelates.
[18] A.A. AL-Sarawy, A.A. EL-Bindary, A.Z. El-Sonbati, T.Y. Omar, Chem. Pap. 59
(2005) 1.
[19] J. Bassett, R.C. Denney, G.H. Jeffery, J. Mendham, Vogel’s Textbook of Quantitave
Inorganic Analysis, London Group Limited, London, 1978.
[20] P.W. Selwood, Magneto Chemistry, Interscience Pub. Inc., New York, 1956.
[21] J.A. Dean, Lange’s Hand Book of Chemistry, 14th ed., MEGRAW-Hill, New York,
1992, p. 35.
[22] A.Z. El-Sonbati, A.A.M. Belal, M.A. Diab, M.Z. Balboula, Spectrochim. Acta A 78
(2011) 1119.
[23] A.Z. El-Sonbati, A. Al-Sarawe, M. Moqbal, Spectrochim. Acta A 74 (2009) 463.
[24] A.Z. El-Sonbati, M.A. Diab, M.S. El-Shehawy, M. Moqbal, Spectrochim. Acta A 75
(2010) 394.
[25] A.Z. El-Sonbati, A.A.M. Belal, M.A. Diab, R.H. Mohamed, Mol. Struct. 990 (2011)
26.
[26] A.Z. El-Sonbati, M.A. Diab, R.H. Mohamed, Polym. Int. 60 (2011) 1467.
[27] Z.H. Chohan, S.K.A. Sheazi, Synth. React. Inorg. Met. -Org. Chem. 29 (1999) 105.
[28] A.Z. El-Sonbati, A.A. El-Bindary, A. El-Dissouky, T.M. El-Gogary, A.S. Hilali, Spec-
trochim. Acta A 58 (2002) 1623.
The study indicates the possibilities of significant variations of
the structure and, therefore, properties of metal chelate complexes
caused by diverse structural modifications of the azo-containing
ligands. Studied in this respect is dominated by problems arising
from the influence of strong electron-withdrawing and electron-
releasing substituents in the aryl rings of the aromatic and
heterocyclic azo compounds, which is essential for defining basic-
ity and ligating abilities of the nitrogen centers in the azo groups. It
is expected that the investigation into these problems may be pro-
moted by further extended studies of the series containing relevant
azo ligands. This will lead to gain a deeper insight into the mech-
anism and preparative application of the azo coupling reactions
under the phase transfer catalysis conditions.
[29] A.A. El-Bindary, A.Z. El-Sonbati, A. El-Dissouky, A.S. Hilali, Spectrochim. Acta A
58 (2002) 1411.
[30] G.C. Percy, D.A. Thornton, J. Inorg. Nucl. Chem. 34 (1972) 3357.
[31] A. El-Dissouky, A.A. El-Bindary, A.Z. El-Sonbati, A.S. Hilali, Spectrochim. Acta A
57 (2002) 1163.
[32] D.X. West, Palaniandavar, Inorg. Chim. Acta 75 (1983) 149.
[33] B.S. Gray, M.J. Reddy, V. Kumar, J. Coord. Chem. 29 (1993) 23.
[34] H.H. Jaffe, S.J. Yen, R.W. Gardner, J. Mol. Spectrosc. 2 (1958) 120.
[35] A.Z. El-Sonbati, A.A.M. Belal, M.A. Diab, M.Z. Balboula, Mol. Str. 990 (2011) 26.
[36] N. Gupta, R. Gupta, S. Chandra, S.S. Bawa, Spectrochim. Acta A 6 (2005) 1175.
[37] V.T. Kasumov, A. Bulut, F. Koksal, M. Aslanoglu, I. Ucar, C. Kazak, Polyhed 25
(2006) 1133.
[38] B.A. Goodman, J.B. Rayner, Adv. Inorg. Chem. Radiochim. 35 (1978) 701.
[39] D. Kivelson, R. Neiman, J. Chem. Phys. 35 (1961) 149.
[40] Y.R.J. Faber, M.T. Rogers, J. Am. Chem. Soc. 81 (1959) 1849.
[41] U. Sagakuchi, A.W. Addision, J. Chem. Soc. Dalton Trans. 600 (1979).
[42] S. Mandal, P.K. Bharadwaj, Polyhedron 11 (1992) 1037.
[43] M.A. Hitchman, T.D. Waite, Inorg. Chem. 15 (1976) 1037.
[44] K.W. Penfield, A.A. Gewirth, E.J. Solomon, J. Am. Chem. Soc. 107 (1985).
[45] C.R.K. Rao, P.S. Zacharias, Polyhedron 16 (1997) 201.
[46] A. Sreetanth, M.R.P. Kurup, Polyhedron 22 (2003) 3321.
[47] B.J. Hathaway, Struct. Bond. 57 (1984) 55 (Berlin).
[48] H.R. Geremann, J.R. Swalen, J. Chem. Phys. 36 (1962) 3221.
[49] B.J. Hathaway, Struct. Bond. 14 (1973) 60.
References
[1] A.Z. El-Sonbati, A.A. El-Bindary, A.F. Shoair, R.M. Younes, Chem. Pharm. Bull. J.
49 (2001) 1308.
[2] Z.H. Chohan, S.K.A. Sheazi, Synth. React. Inorg. Met. – Org. Chem. 29 (1999) 105.
[3] L. Savanni, L. Chiasserini, A. Gaeta, C. Pellerano, Biorg. Med. Chem. 10 (2002)
2193.
[50] G. Giordano, R.D. Bereman, J. Am. Chem. Soc. 96 (1974) 1019.