Y. Hosokawa et al.
Bull. Chem. Soc. Jpn., 78, No. 10 (2005) 1781
parameters for CHCl3 were taken from Caldwell’s work.33 The
system was subjected to energy minimization for 1000 steps,
gradual heating from 0 to 300 K over 15000 steps, preequili-
bration at 300 K for 250000 steps, and production run at 300
K for 4000000 steps. For the vacuum simulation, a snapshot
was taken from the solvated simulation after the preequilibra-
tion, all the solvent molecules were removed, and the resulting
naked 1a was subjected to production run at 300 K (without
periodic boundary conditions) for 4000000 steps.
Simulations of Gold/TTO Systems. A set of atomic
coordinates for an ideal cuboctahedral Au147 was created with
ꢀ
the Au–Au distances of 2.88 A (= the interatomic distance in
metallic gold). In the present study, the conformational change
of the gold nanoparticle is not taken into account; hence, Au–
References
a) D. L. Feldheim, C. A. Foss, Jr., and M. Dekker, ‘‘Metal
Nanoparticles,’’ New York (2002). b) M.-C. Daniel and D. Astruc,
Chem. Rev., 104, 293 (2004).
2 J. J. Pietron, J. F. Hicks, and R. W. Murray, J. Am. Chem.
Soc., 121, 5565 (1999).
1
3 P. Claus, A. Brueckner, C. Mohr, and H. Hofmeister,
J. Am. Chem. Soc., 122, 11430 (2000).
4
M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R.
Whyman, Chem. Commun., 1994, 801.
A. C. Templeton, W. P. Wuelfing, and R. W. Murray, Acc.
Chem. Res., 33, 27 (2000).
5
6 J. G. Worden, A. W. Schaffer, and Q. Huo, Chem.
Commun., 2004, 518.
ꢀ
Au bonds with equilibrium length 2.88 A and force constant
ꢀ
200 kcal/mol/A were assumed between all neighboring gold
7
a) A. B. R. Mayer and J. E. Mark, ACS Symp. Ser., 622,
137 (1996). b) N. Toshima, NATO ASI Ser., Ser. 3, 12, 371 (1996).
atoms. Bond angles and dihedrals were not included. Different
atom types were assigned for the surface and internal gold
atoms, so that the pair-specific van der Waals potentials (see:
text for details) between the gold atoms and the TTO atoms
should work only for the surface gold atoms. Ninety-two gold
atoms out of 147 were assigned as the surface atoms.
The starting structures of the simulation of 16 TTOs and
Au147 were generated in the following protocol: (i) the Au147
was placed at (0, 0, 0), (ii) 16 points were generated by use
of the Halton sequence of quasi-random points34 within a cube
8
R. M. Crooks, M. Zhao, L. Sun, V. Chechik, and L. K.
Young, Acc. Chem. Res., 34, 181 (2001).
a) X.-M. Li, M. R. de Jong, K. Inoue, S. Shinkai, J.
9
Huskens, and D. N. Reinhoudt, J. Mater. Chem., 11, 1919
(2001). b) E. J. Shelley, D. Ryan, S. R. Johnson, M. Couillard,
D. Fitzmaurice, P. D. Nellist, Y. Chen, R. E. Palmer, and J. A.
Preece, Langmuir, 18, 1791 (2002).
10 N. Ono, H. Tomita, and K. Maruyama, J. Chem. Soc.,
Perkin Trans. 1, 1992, 2453.
11 H.-F. Chow, M.-K. Ng, C.-W. Leung, and G.-X. Wang,
J. Am. Chem. Soc., 126, 12907 (2004).
ꢀ
of 78-A edges centered at (0, 0, 0), (iii) for each of the 16
12 a) M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N.
Shafigullin, I. Vezmar, and R. L. Whetten, J. Phys. Chem. B,
101, 3706 (1997). b) T. G. Schaaff, M. N. Shafigullin, J. T.
Khoury, I. Vezmar, R. L. Whetten, W. G. Cullen, P. N. First, C.
points, a random conformation was selected from the trajecto-
ry of the simulation of solvated 1a and placed at the point, and
the placed molecule was rotated by random angle until no
atom collisions were found, and (iv) if the molecule could
not placed in any orientation, this point was discarded and
another point was generated. The mean intermolecular dis-
´
´
Gutierrez-Wing, J. Ascensio, and M. J. Jose-Yacaman, J. Phys.
Chem. B, 101, 7885 (1997).
13 a) S. Chen and R. W. Murray, Langmuir, 15, 682 (1999). b)
R. Wang, J. Yang, Z. Zheng, M. D. Carducci, J. Jiao, and S.
Seraphin, Angew. Chem., Int. Ed., 40, 549 (2001). c) M.-K.
Kim, Y.-M. Jeon, W. S. Jeon, H.-J. Kim, S. G. Hong, C. G. Park,
and K. Kim, Chem. Commun., 2001, 667. d) Y. Zhou, H. Itoh,
T. Uemura, K. Naka, and Y. Chujo, Langmuir, 18, 277 (2002).
14 a) B. Park, M. Chandross, M. J. Stevens, and G. S. Grest,
Langmuir, 19, 9239 (2003). b) Y. Morikawa, T. Hayashi, C. C.
Liew, and H. Nozoye, Hyomen Kagaku, 23, 423 (2002). c) M.
Tarek, K. Tu, M. L. Klein, and D. J. Tobias, Biophys. J., 77,
964 (1999). d) H. H. Jung, Y. D. Won, S. Shin, and K. Kim,
Langmuir, 15, 1147 (1999). e) T.-W. Li, I. Chao, and Y.-T.
Tao, J. Phys. Chem. B, 102, 2935 (1998). f) T. Bonner and A.
Baratoff, Surf. Sci., 377–379, 1082 (1997). g) Z. Zhang, T. L.
Beck, J. T. Young, and F. J. Boerio, Langmuir, 12, 1227 (1996).
h) J. Hautman and M. L. Klein, J. Chem. Phys., 91, 4994 (1989).
15 a) T. X. Li, S. M. Lee, S. J. Han, and G. H. Wang, Phys.
Lett. A, 300, 86 (2002). b) H.-S. Nam, N. M. Hwang, B. D. Yu,
and J.-K. Yoon, Phys. Rev. Lett., 89, 275502 (2002).
16 a) K. L. Yin, Q. Xia, H. T. Xi, D. J. Xu, X. Q. Sun, and
C. L. Chen, THEOCHEM, 674, 159 (2004). b) B. Arezki, A.
Delcorte, A. C. Chami, B. J. Garrison, and P. Bertrand, Nucl.
Instrum. Methods Phys. Res., Sect. B, 212, 369 (2003).
17 D. J. Lavrich, S. M. Wetterer, S. L. Bernasek, and G.
Scoles, J. Phys. Chem. B, 102, 3456 (1998).
18 K. M. Beardmore, J. D. Kress, N. Grønbech-Jensen, and
A. R. Bishop, Chem. Phys. Lett., 286, 40 (1998).
19 a) U. H. E. Hansmann and Y. Okamoto, J. Comput. Chem.,
ꢀ
tance was about 40 A. To the resulting set of molecules, a rec-
ꢀ
tangular box of CHCl3 was added, providing at least 4 A of
CHCl3 around any solute atom, and the system was subjected
to the following sequence of simulations: (i) energy minimiza-
tion for 1000 steps, (ii) gradually heating from 0 to 300 K over
15000 steps, and (iii) production run at 300 K for 3000000
steps. The simulation of 1:1 complexes of TTO and Au147
was carried out in a similar manner, except that only one
TTO was placed around the gold nanoparticle.
We thank Dr. Osamu Oishi (IMS) for TEM measurement,
Mr. Akito Sasaki (Rigaku Co.) for SAXS measurement and
analysis, and the Research Center for Computational Science
of Okazaki Research Facilities, National Institutes of Natural
Sciences (NINS) for the use of the SGI2800 computer. This
work was supported by a Grant-in-Aid for Scientific Research
in Priority Area, ‘‘Reaction Control of Dynamic Complexes’’
(No. 16033262) and ‘‘Nanotechnology Support Project’’ of
the Ministry of Education, Culture, Sports, Science and Tech-
nology (MEXT), Japan.
Supporting Information
Details of synthetic procedures and compound data (6 pages),
and the details of RESP charge calculations (1 page). This mate-
journals/bcsj/.