Journal of the American Chemical Society
Communication
Radical Addition to Carbonyl Carbon Promoted by Aqueous Titanium
Trichloride: Stereoselective Synthesis of α,β-Dihydroxy Ketones. J. Org.
Chem. 1989, 54 (16), 3872−3878. (d) Devin, P.; Fensterbank, L.;
Malacria, M. Tin-Free Radical Chemistry: Intramolecular Addition of
Alkyl Radicals to Aldehydes and Ketones. Tetrahedron Lett. 1999, 40
(30), 5511−5514. (e) Pitzer, L.; Sandfort, F.; Strieth-Kalthoff, F.;
Glorius, F. Intermolecular Radical Addition to Carbonyls Enabled by
Visible Light Photoredox Initiated Hole Catalysis. J. Am. Chem. Soc.
2017, 139 (39), 13652−13655. (f) Che, C.; Qian, Z.; Wu, M.; Zhao, Y.;
Zhu, G. Intermolecular Oxidative Radical Addition to Aromatic
Aldehydes: Direct Access to 1,4- and 1,5-Diketones via Silver-Catalyzed
Ring-Opening Acylation of Cyclopropanols and Cyclobutanols. J. Org.
Chem. 2018, 83 (10), 5665−5673. (g) Saladrigas, M.; Bosch, C.;
Saborit, G. V.; Bonjoch, J.; Bradshaw, B. Radical Cyclization of Alkene-
Tethered Ketones Initiated by Hydrogen-Atom Transfer. Angew.
Chem., Int. Ed. 2018, 57 (1), 182−186.
(3) ΔEfrag is around 0.4 to −13.2 kcal/mol for tertiary alkoxyl radicals.
(4) (a) Gray, P.; Williams, A. The Thermochemistry and Reactivity of
Alkoxyl Radicals. Chem. Rev. 1959, 59 (2), 239−328. (b) Ernesto, S.;
Maria, S. R. β-Fragmentation of Alkoxyl Radicals: Synthetic
Applications. In Radicals in Organic Synthesis; Philippe, R., Sibi, M. P.,
Eds.; Wiley-VCH: 2001; Vol. 2, pp 440−454. (c) Wilsey, S.; Dowd, P.;
Houk, K. N. Effect of Alkyl Substituents and Ring Size on Alkoxy
Radical Cleavage Reactions. J. Org. Chem. 1999, 64 (24), 8801−8811.
(5) Peterson, E. A.; Overman, L. E. Contiguous Stereogenic
Quaternary Carbons: A Daunting Challenge in Natural Products
Synthesis. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (33), 11943−11948.
(6) Basu, A.; Kunduru, K. R.; Katzhendler, J.; Domb, A. J. Poly(α-
hydroxy acid)s and Poly(α-hydroxy acid-co-α-amino acid)s Derived
from Amino Acid. Adv. Drug Delivery Rev. 2016, 107, 82−96.
(7) (a) Thompson, I. M.; Lauvetz, R. Oxybutynin in Bladder Spasm,
Neurogenic Bladder, and Enuresis. Urology 1976, 8 (5), 452−454.
(b) Hansel, T. T.; Neighbour, H.; Erin, E. M.; Tan, A. J.; Tennant, R.
C.; Maus, J. G.; Barnes, P. J. Glycopyrrolate Causes Prolonged
Bronchoprotection and Bronchodilatation in Patients with Asthma.
Chest 2005, 128 (4), 1974−1979.
Springer: 2015; Vol. 49. (c) Sorin, G.; Martinez Mallorquin, R.; Contie,
Y.; Baralle, A.; Malacria, M.; Goddard, J.-P.; Fensterbank, L. Oxidation
of Alkyl Trifluoroborates: An Opportunity for Tin-Free Radical
Chemistry. Angew. Chem., Int. Ed. 2010, 49 (46), 8721−8723.
(d) Fujiwara, Y.; Domingo, V.; Seiple, I. B.; Gianatassio, R.; Del Bel,
M.; Baran, P. S. Practical C−H Functionalization of Quinones with
Boronic Acids. J. Am. Chem. Soc. 2011, 133 (10), 3292−3295.
(e) Molander, G. A.; Colombel, V.; Braz, V. A. Direct Alkylation of
Heteroaryls Using Potassium Alkyl- and Alkoxymethyltrifluoroborates.
Org. Lett. 2011, 13 (7), 1852−1855. (f) Tobisu, M.; Koh, K.; Furukawa,
T.; Chatani, N. Modular Synthesis of Phenanthridine Derivatives by
Oxidative Cyclization of 2-Isocyanobiphenyls with Organoboron
Reagents. Angew. Chem., Int. Ed. 2012, 51 (45), 11363−11366.
(g) Yasu, Y.; Koike, T.; Akita, M. Visible Light-Induced Selective
Generation of Radicals from Organoborates by Photoredox Catalysis.
Adv. Synth. Catal. 2012, 354 (18), 3414−3420. (h) Neufeldt, S. R.;
Seigerman, C. K.; Sanford, M. S. Mild Palladium-Catalyzed C−H
Alkylation Using Potassium Alkyltrifluoroborates in Combination with
MnF3. Org. Lett. 2013, 15 (9), 2302−2305. (i) Huang, H.; Zhang, G.;
Gong, L.; Zhang, S.; Chen, Y. Visible-Light-Induced Chemoselective
Deboronative Alkynylation under Biomolecule-Compatible Condi-
tions. J. Am. Chem. Soc. 2014, 136 (6), 2280−2283. (j) Li, G.-X.;
Morales-Rivera, C. A.; Wang, Y.; Gao, F.; He, G.; Liu, P.; Chen, G.
Photoredox-Mediated Minisci C−H Alkylation of N-Heteroarenes
using Boronic Acids and Hypervalent Iodine. Chem. Sci. 2016, 7 (10),
6407−6412. (k) Lima, F.; Sharma, U. K.; Grunenberg, L.; Saha, D.;
Johannsen, S.; Sedelmeier, J.; Van der Eycken, E. V.; Ley, S. V. A Lewis
Base Catalysis Approach for the Photoredox Activation of Boronic
Acids and Esters. Angew. Chem., Int. Ed. 2017, 56 (47), 15136−15140.
(l) Yamamoto, H. Lewis Acids in Organic Synthesis; Wiley-VCH: 2000.
(m) Santelli, M.; Pons, J.-M. Lewis Acids and Selectivity in Organic
Synthesis; CRC Press: 1995. (n) Ellis, G. A.; Palte, M. J.; Raines, R. T.
Boronate-Mediated Biologic Delivery. J. Am. Chem. Soc. 2012, 134 (8),
3631−3634.
(12) (a) Molander, G. A.; Ellis, N. Organotrifluoroborates: Protected
Boronic Acids that Expand the Versatility of the Suzuki Coupling
Reaction. Acc. Chem. Res. 2007, 40 (4), 275−286. (b) Lennox, A. J. J.;
Lloyd-Jones, G. C. Organotrifluoroborate Hydrolysis: Boronic Acid
Release Mechanism and an Acid−Base Paradox in Cross-Coupling. J.
Am. Chem. Soc. 2012, 134 (17), 7431−7441.
(13) The CCDC number of 4 in Cambridge Structural Database is
1948621.
(14) (a) Lima, C. G. S.; de M. Lima, T.; Duarte, M.; Jurberg, I. D.;
(8) (a) Silverman, G. S.; Rakita, P. E. Handbook of Grignard Reagents;
CRC Press: 1996. (b) Wakefield, B. J. The Chemistry of Organolithium
Compounds; Elsevier: 2013.
(9) Allmendinger, T.; Bixel, D.; Clarke, A.; Di Geronimo, L.; Fredy, J.-
W.; Manz, M.; Gavioli, E.; Wicky, R.; Schneider, M.; Stauffert, F. J.;
Tibi, M.; Valentekovic, D. Carry Over of Impurities: A Detailed
Exemplification for Glycopyrrolate (NVA237). Org. Process Res. Dev.
2012, 16 (11), 1754−1769.
Paixao, M. W. Organic Synthesis Enabled by Light-Irradiation of EDA
̃
(10) (a) Caronna, T.; Fronza, G.; Minisci, F.; Porta, O. Homolytic
Acylation of Protonated Pyridine and Pyrazine Derivatives. J. Chem.
Soc., Perkin Trans. 2 1972, No. 14, 2035−2038. (b) Liu, J.; Liu, Q.; Yi,
H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A. Visible-Light-Mediated
Decarboxylation/Oxidative Amidation of α-Keto Acids with Amines
under Mild Reaction Conditions Using O2. Angew. Chem., Int. Ed. 2014,
53 (2), 502−506. (c) Papadopoulos, G. N.; Limnios, D.; Kokotos, C. G.
Photoorganocatalytic Hydroacylation of Dialkyl Azodicarboxylates by
Utilising Activated Ketones as Photocatalysts. Chem. - Eur. J. 2014, 20
(42), 13811−13814. (d) Chu, L.; Lipshultz, J. M.; MacMillan, D. W. C.
Merging Photoredox and Nickel Catalysis: The Direct Synthesis of
Ketones by the Decarboxylative Arylation of α-Oxo Acids. Angew.
Chem., Int. Ed. 2015, 54 (27), 7929−7933. (e) Huang, H.; Zhang, G.;
Chen, Y. Dual Hypervalent Iodine(III) Reagents and Photoredox
Catalysis Enable Decarboxylative Ynonylation under Mild Conditions.
Angew. Chem. 2015, 127 (27), 7983−7987. (f) Tan, H.; Li, H.; Ji, W.;
Wang, L. Sunlight-Driven Decarboxylative Alkynylation of α-Keto
Acids with Bromoacetylenes by Hypervalent Iodine Reagent Catalysis:
A Facile Approach to Ynones. Angew. Chem., Int. Ed. 2015, 54 (29),
8374−8377. (g) Penteado, F.; Lopes, E. F.; Alves, D.; Perin, G.; Jacob,
Complexes: Theoretical Background and Synthetic Applications. ACS
Catal. 2016, 6 (3), 1389−1407. (b) Mulliken, R. S. Molecular
Compounds and Their Spectra. III. The Interaction of Electron Donors
and Acceptors. J. Phys. Chem. 1952, 56 (7), 801−822. (c) Foster, R.
Electron Donor-Acceptor Complexes. J. Phys. Chem. 1980, 84 (17),
2135−2141. (d) Simionescu, C. I.; Grigoras, M. Macromolecular
Donor-Acceptor Complexes. Prog. Polym. Sci. 1991, 16 (6), 907−976.
(e) Arceo, E.; Jurberg, I. D.; Alvarez-Fernandez, A.; Melchiorre, P.
Photochemical Activity of a Key Donor-Acceptor Complex Can Drive
Stereoselective Catalytic α-Alkylation of Aldehydes. Nat. Chem. 2013, 5
(9), 750−756. (f) Zhang, J.; Li, Y.; Xu, R. Y.; Chen, Y. Y. Donor-
Acceptor Complex Enables Alkoxyl Radical Generation for Metal-Free
C(sp(3))-C(sp(3)) Cleavage and Allylation/Alkenylation. Angew.
Chem., Int. Ed. 2017, 56 (41), 12619−12623.
(15) (a) Friedman, S.; Pizer, R. Mechanism of the Complexation of
Phenylboronic Acid with Oxalic Acid. Reaction Which Requires Ligand
Donor Atom Protonation. J. Am. Chem. Soc. 1975, 97 (21), 6059−6062.
(b) Babcock, L.; Pizer, R. Dynamics of boron acid complexation
reactions. Formation of 1:1 boron acid-ligand complexes. Inorg. Chem.
1980, 19 (1), 56−61.
(16) (a) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling
Reactions of Organoboron Compounds. Chem. Rev. 1995, 95 (7),
2457−2483. (b) Netherton, M. R.; Fu, G. C. Suzuki Cross-Couplings of
Alkyl Tosylates that Possess β Hydrogen Atoms: Synthetic and
Mechanistic Studies. Angew. Chem., Int. Ed. 2002, 41 (20), 3910−3912.
́
́
R. G.; Lenardao
̃
, E. J. α-Keto Acids: Acylating Agents in Organic
Synthesis. Chem. Rev. 2019, 119 (12), 7113−7278.
(11) (a) Hall, D. G. Boronic Acids: Preparation, Applications in Organic
́
Synthesis and Medicine; John Wiley & Sons: 2006. (b) Fernandez, E.;
Whiting, A. Synthesis and Application of Organoboron Compounds;
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX