C O M M U N I C A T I O N S
Scheme 2
appendage in both diastereomeric morpholino nitrile series (see
structures 9 and 10, Scheme 4). In brief, when each of the four
pairs of diastereomeric starting materials was subjected to cycliza-
tion conditions (40-60 °C, ∼15 h) the tetracycle 4 was formed as
the major product, but the substrate 9, containing a cis-allyl silane
appendage and an S-configured morpholino nitrile group, formed
4 most efficiently (53% yield). In both the cis- and trans-substrate
series the S-morpholino nitrile stereochemistry correlated with a
slightly greater efficiency of product formation (Scheme 4).
Acknowledgment. Financial support from the National Institutes
of Health is gratefully acknowledged. S.K. acknowledges a pre-
doctoral fellowship from Eli Lilly. We thank Dr. Richard Staples
for the X-ray analyses, and Kyowa Hakko Kogyo Co., Ltd. for an
authentic sample of quinocarcin.
Scheme 3
Supporting Information Available: Detailed experimental pro-
cedures and tabulated spectroscopic data (1H and 13C NMR, FT-IR and
HRMS) for all new compounds, and the X-ray analysis of the aldehyde
intermediate referred to in reference 10. This material is available free
References
(1) Isolation: (a) Tomita, F.; Takahashi, K.; Shimizu, K. J. Antibiot. 1983,
463-467. (b) Takahashi, K.; Tomita, F. J. Antibiot. 1983, 468-470.
(2) Biological activity: (a) Tomita, F.; Takahashi, K.; Tamaoki, T. J. Antibiot.
1984, 1268-1272. (b) Fujimoto, K.; Oka, T.; Morimoto, M. Cancer Res.
1987, 47, 1516-1522. (c) Kanamaru, R.; Konishi, Y.; Ishioka, C.; Kakuta,
H.; Sato, T.; Ishikawa, A.; Asamura, M.; Wakui, A. Cancer Chemother.
Pharmacol. 1988, 22, 197-200.
(3) Reviews: (a) Arai, T.; Kubo, A. In The Alkaloids; Brossi, A., Ed.;
Academic Press: New York, 1983; Vol. 21, Chapter 3. (b) Remers, W.
A. The Chemistry of Antitumor Antibiotics; Wiley-Interscience: New York,
1988; Vol. 2, Chapter 3.
Scheme 4
(4) Rinehart, K. L.; Holt, T. G.; Fregeau, N. L.; Stroh, J. G.; Keifer, P. A.;
Sun, F.; Li, L. H.; Martin, D. G. J. Org. Chem. 1990, 55, 4512-4515.
(5) Myers, A. G.; Kung, D. W. J. Am. Chem. Soc. 1999, 121, 10828-10829.
(6) For selected prior studies directed toward the synthesis of quinocarcin,
see: (a) Danishefsky, S. J.; Harrison, P. J.; Webb, R. R., II; O’Neill, B.
T. J. Am. Chem. Soc. 1985, 107, 1421-1423. (b) Fukuyama, T.; Nunes,
J. J. J. Am. Chem. Soc. 1988, 110, 5196-5198. (c) Garner, P.; Ho, W.
B.; Shin, H. J. Am. Chem. Soc. 1992, 114, 2767-2768. (d) Garner, P.;
Ho, W. B.; Shin, H. J. Am. Chem. Soc. 1993, 115, 10742-10753. (e)
Katoh, T.; Kirihara, M.; Nagata, Y.; Kobayashi, Y.; Arai, K.; Minami, J.;
Terashima, S. Tetrahedron Lett. 1993, 34, 5747-5750. (f) Katoh, T.;
Kirihara, M.; Nagata, Y.; Kobayashi, Y.; Arai, K.; Minami, J.; Terashima,
S. Tetrahedron 1994, 50, 6239-6258. (g) Katoh, T.; Terashima, S. Pure
Appl. Chem, 1996, 68, 703-706. (h) Flanagan, M. E.; Williams, R. M. J.
Org. Chem. 1995, 60, 6791-6797. For a comprehensive review of
syntheses of the tetrahydroisoquinoline antitumor antibiotics, see: (i) Scott,
J. D.; Williams, R. M. Chem. ReV. 2002, 102, 1669-1730.
(7) Myers, A. G.; Schnider, P.; Kwon, S.; Kung, D. W. J. Org. Chem. 1999,
64, 3322-3327.
(8) Myers, A. G.; Kung, D. W.; Zhong, B.; Movassaghi, M.; Kwon, S. J.
Am. Chem. Soc. 1999, 121, 8401-8402.
(9) Allyl silane-iminium and acyl iminium ion cyclizations are extensively
precedented in synthesis, including applications related to the [3.2.1]-
bicyclic framework of quinocarcin: (a) Veerman, J. J. N.; Bon, R. S.;
Hue, B. T. B.; Girones, D.; Rutjes, F. P. J. T.; van Maarseveen, J. H.;
Hiemstra, H. J. Org. Chem. 2003, 68, 4486-4494. (b) Rikimaru, K.; Mori,
K.; Kan, T.; Fukuyama, T. Chem. Commun. 2005, 394-396. For reviews,
see: (c) Fleming, I.; Barbero, A.; Walter, D. Chem. ReV. 1997, 97, 2063-
2192. (d) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56,
3817-3856. (e) Maryanoff, B. E.; Zhang, H.-C.; Cohen, J. H.; Turchi, I.
J.; Maryanoff, C. A. Chem. ReV. 2004, 104, 1431-1628. (f) Royer, J.;
Bonin, M.; Micouin, L. Chem. ReV. 2004, 104, 2311-2352.
(10) The intermediate aldehyde could be crystallized from benzene. The
colorless crystals obtained proved suitable for analysis by X-ray diffraction,
which confirmed the structure and all stereochemical assignments.
(11) Kwon, S. Ph.D. Thesis, Harvard University, Cambridge, MA, 2005. In
no case have we observed diastereomers of product 4 in any of the
cyclization reactions described.
We investigated the influence of modification of the stereo-
chemistry of the morpholino nitrile group upon the key cyclization
reaction (using as starting material the diastereomer produced in
the synthesis of the C-protected R-amino aldehyde derivative 2;
see structure 8, Scheme 4, and the Supporting Information) as well
as the influence of modification of the geometry of the allyl silane
JA056206N
9
J. AM. CHEM. SOC. VOL. 127, NO. 48, 2005 16797