1950
C.S. Neish et al
Ligand-protein interaction visualized by AFM
acetylcholine receptor, the GABAA receptor and the 5-HT3
receptor. These ligand-gated ion channels all consist of ®ve
homologous subunits arranged around a central pore. The
subunits present within all three of these receptors have been
well characterized (Karlin, 1987; Unwin, 1998; Farrar et al.,
1999; Davies et al., 1999), but the arrangement of the
subunits to form the functioning receptor is still unclear. By
biotinylating speci®c subunits, for example via introduced
cysteine residues (Noji et al., 1997), and then using
streptavidin tagged with single DNA-biotin molecules to
decorate the receptor, it should be possible to deduce the
receptor structure using AFM imaging. For example, if two
tagged subunits are adjacent, then the angle between the
DNA rods will be 728, whereas if they are separated by an
untagged subunit, the angle will be 1448. Our current aim is
to apply this analysis to the GABAA receptor. Finally, it may
be possible to couple receptor ligands directly to DNA, which
might permit the use of AFM to study the relative positions
of the binding sites for dierent ligands on the same receptor
complex, through the use of dierent-length DNA tags. The
GABAA receptor might also provide a suitable model system
for this approach, since it is the target for multiple ligands,
such as GABA itself, the benzodiazepines and barbiturates
(Sieghart, 1995).
This work was funded by Grant B12816 from the Biotechnology
and Biological Sciences Research Council (to R.M. Henderson and
J.M. Edwardson)
References
BERGE, T., ELLIS, D.J., DRYDEN, D.T.F., EDWARDSON, J.M.
&
HENDRICKSON, W.A., PAHLER, A., SMITH, J.L., SATOW, Y.,
MERRITT, E.A. & PHIZACKERLEY, R.P. (1989). Crystal structure
of core streptavidin determined from multiwavelength anom-
alous diraction of synchotron radiation. Proc. Natl. Acad. Sci.
U.S.A., 86, 2190 ± 2194.
KANESHIRO, C., ENNS, C., HAHN, M., PETERSON, J. & REITHEL, F.
(1975). Evidence for an active dimer of Escherichia coli
b-galactosidase. Biochem. J., 151, 433 ± 434.
HENDERSON, R.M. (2000). Translocation-independent dimeriza-
tion of the EcoKI endonuclease visualized by atomic force
microscopy. Biophys. J., 79, 479 ± 484.
COHEN, R. & MIRE, M. (1971). Analytical-band centrifugation of an
active enzyme-substrate complex. Determination of active
subunits of various enzymes. Eur. J. Biochem., 23, 276 ± 281.
DAVIES, P.A., PISTIS, M., HANNA, M.C., PETERS, J.A., LAMBERT,
J.J., HALES, T.G. & KIRKNESS, E.F. (1999). The 5-HT3B subunit is
a major determinant of serotonin-receptor function. Nature, 397,
359 ± 363.
EDSTROM, R.D., MEINKE, M.H., YANG, R., YANG, X., ELINGS, V. &
EVANS, D.F. (1990). Direct visualization of phosphorylase-
phosphorylase kinase complexes by scanning tunneling and
atomic force microscopy. Biophys. J., 58, 1437 ± 1448.
ELLIS, D.J., BERGE, T., EDWARDSON, J.M. & HENDERSON, R.M.
(1999a). Investigation of protein partnerships using atomic force
microscopy. Microsc. Res. Tech., 44, 368 ± 377.
KARLIN, A. (1987). Going round in receptor circles. Nature, 329,
286 ± 287.
KATZ, B.A. (1997). Binding of biotin to streptavidin stabilizes
intersubunit salt bridges between Asp61 and His87 at low pH.
J. Mol. Biol., 274, 776 ± 800.
KLUMB, L.A., CHU, V. & STAYTON, P.S. (1998). Energetic roles of
hydrogen bonds at the ureido oxygen binding pocket in the
streptavidin-biotin complex. Biochemistry, 37, 7657 ± 7663.
LARMER, J., SCHNEIDER, S.W., DANKER, T., SCHWAB, A.
&
OBERLEITHNER, H. (1997). Imaging excised apical plasma
membrane patches of MDCK cells in physiological conditions
ELLIS, D.J., DRYDEN, D.T.F., BERGE, T., EDWARDSON, J.M.
&
HENDERSON, R.M. (1999b). Direct observation of DNA
translocation and cleavage by the EcoKI endonuclease using
atomic force microscopy. Nature Struct. Biol., 6, 15 ± 17.
FARRAR, S.J., WHITING, P.J., BONNERT, T.P. & MCKERNAN, R.M.
(1999). Stoichiometry of a ligand-gated ion channel determined
by ¯uorescence resonance energy transfer. J. Biol. Chem., 274,
10100 ± 10104.
with atomic force microscopy. P¯ugers Arch., 434, 254 ± 260.
È
NOJI, H., YASUDA, R., YOSHIDA, M. & KINOSHITA, JR K. (1997).
Direct observation of the rotation of F1-ATPase. Nature, 386,
299 ± 302.
SAMBROOK, J., FRITSCH, E.F. & MANIATIS, T. (1989). Molecular
Cloning: A Laboratory Manual. 2nd edn. New York: Cold Spring
Harbor Laboratory Press.
FREITAG, S., LE TRONG, I., CHILKOTI, A., KLUMB, L.A., STAYTON,
P.S. & STENKAMP, R.E. (1998). Structural studies of binding site
tryptophan mutants in the high-anity streptavidin-biotin
complex. J. Mol. Biol., 279, 211 ± 221.
FREITAG, S., LE TRONG, I., KLUMB, L.A., CHU, V., CHILKOTI, A.,
STAYTON & STENKAMP, R.E. (1999). X-ray crystallographic
studies of streptavidin mutants binding to biotin. Biomol. Eng.,
16, 13 ± 19.
SANO, T., & CANTOR, C.R. (1995). Intersubunit contacts made by
tryptophan 120 with biotin are essential for both strong biotin
binding and biotin-induced tighter subunit association of
streptavidin. Proc. Natl. Acad. Sci. U.S.A., 92, 3180 ± 3184.
SCHNEIDER, S.W., LARMER, J., HENDERSON, R.M. & OBERLEITH-
NER, H. (1998). Molecular weights of individual proteins
correlate with molecular volumes measured by atomic force
microscopy. P¯ugers Arch., 435, 362 ± 367.
È
GREEN, N.M. (1990). Avidin and streptavidin. Methods Enzymol.,
184, 51 ± 67.
SIEGHART, W. (1995). Structure and pharmacology of GABA(A)
receptor subtypes. Pharmacol. Rev., 47, 181 ± 234.
GONZALEZ, M., ARGARANA, C.E.
&
FIDELIO, G.D. (1999).
STAYTON, P.S., FREITAG, S., KLUMB, L.A., CHILKOTI, A., CHU, V.,
PENZOTTI, J.E., TO, R., HYRE, D., LE TRONG, I., LYBRAND, T.P.
Extremely high thermal stability of streptavidin and avidin upon
biotin binding. Biomol. Eng., 16, 67 ± 72.
GONZALEZ, M., BAGATOLLI, L.A., ECHABE, I., ARRONDO, J.L.R.,
& STENKAMP, R.E. (1999). Streptavidin-biotin binding ener-
getics. Biomol. Eng., 16, 39 ± 44.
ARGARANA, C.E., CANTOR, C.R.
&
FIDELIO, G.D. (1997).
UNWIN, N. (1998). The nicotinic acetylcholine receptor of the
Torpedo electric ray. J. Struct. Biol., 121, 181 ± 190.
WEBER, P.C., OHLENDORF, D.H., WENDOLOSKI, J.J. & SALEMME,
F.R. (1989). Structural origins of high-anity biotin binding to
streptavidin. Science, 243, 85 ± 88.
Interaction of biotin with streptavidin. Thermostability and
conformational changes upon binding. J. Biol. Chem., 272,
11288 ± 11294.
HANSMA, H.G., SINSHEIMER, R.L., GROPPE, J., BRUICE, T.C.,
ELINGS, V., GURLEY, G., BEZANILLA, M., MASTRANGELO,
I.A., HOUGH, P.V.C. & HANSMA, P.K. (1993). Recent advances in
atomic force microscopy of DNA. Scanning, 15, 296 ± 299.
(Received October 16, 2001
Revised January 1, 2002
Accepted February 11, 2002)
British Journal of Pharmacology vol 135 (8)