C O M M U N I C A T I O N S
Table 2. Scope of the Anti-Markovnikov Hydroamination of
Terminal Alkynes with Amines Catalyzed by TpRh(C2H4)2/PPh3
octyne with benzylamine to obtain information about the reaction
mechanism was unsuccessful, as it resulted in rapid H/D scramble.
In summary, we have demonstrated herein the TpRh(C2H4)2/
PPh3-catalyzed anti-Markovnikov hydroamination of terminal alkynes
both with primary and secondary amines. Efforts are currently
underway to investigate the scope and mechanism of the reaction.
a
Acknowledgment. We thank the Instrumental Analysis Center,
Faculty of Engineering, Osaka University, for assistance with the
HRMS and elemental analyses. Y.F. is grateful to Otsuka Phar-
maceutical Co., Ltd., for financial support of this work.
Supporting Information Available: Experimental procedures and
characterization of all new compounds (PDF). This material is available
References
(1) For recent reviews on catalytic hydroamination, see: (a) Odom, A. L.
Dalton Trans. 2005, 225. (b) Hultzsch, K. C. AdV. Synth. Catal. 2005,
347, 367. (c) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673. (d)
Doye, S. Synlett 2004, 1653. (e) Roesky, P. W.; Mu¨ller, T. E. Angew.
Chem., Int. Ed. 2003, 42, 2708. (f) Bytschkov, I.; Doye, S. Eur. J. Org.
Chem. 2003, 935. (g) Pohlki, F.; Doye, S. Chem. Soc. ReV. 2003, 32,
104.
(2) For reviews on the chemistry of imines and enamines, see: (a) Sammakia
T.; Abramite, J. A.; Sammons, M. F. Product Subclass of 6: Enamines.
In Science of Synthesis; Molander, M., Ed.; Georg Thieme Verlag:
Stuttgart, 2006; pp 405-411. (b) Adams, J. P. J. Chem. Soc., Perkin Trans.
1 2000, 125. (c) Kuckla¨nder, U. In The Chemistry of Enamines; Rappoport,
Z., Ed.; Wiley-VCH: New York, 1994; pp 523-636.
(3) Recent reports on the intermolecular Markovnikov hydroamination of
alkynes, see: (a) Lai, R.-Y.; Surekha, K.; Hayashi, A.; Ozawa, F.; Liu,
Y.-H.; Peng, S.-M.; Liu, S.-T. Organometallics 2007, 26, 1062. (b)
Lingaiah, N.; Babu, N. S.; Reddy, K. M.; Prasad, P. S. S.; Suryanarayana,
I. Chem. Commun. 2007, 278.
(4) (a) Straub, T.; Haskel, A.; Neyroud, T. G.; Kapon, M.; Botoshansky, M.;
Eisen, M. S. Organometallics 2001, 20, 5017. (b) Haskel, A.; Straub, T.;
Eisen, M. S. Organometallics 1996, 15, 3773.
(5) (a) Tillack, A.; Jiao, H.; Castro, I. G.; Hartung, C. G.; Beller, M. Chem.s
Eur. J. 2004, 10, 2409. (b) Tillack, A.; Castro, I. G.; Hartung, C. G.;
Beller, M. Angew. Chem., Int. Ed. 2002, 41, 2541. (c) Haak, E.;
Siebeneicher, H.; Doye, S. Org. Lett. 2000, 2, 1935.
(6) (a) Zhang, Z.; Leitch, D. C.; Lu, M.; Patrick, B. O.; Schafer, L. L. Chem.s
Eur. J. 2007, 13, 2012. (b) Zhang, Z.; Schafer, L. L. Org. Lett. 2003, 5,
4733.
(7) Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1992,
114, 1708.
a Reaction conditions: alkyne (0.5 mmol), amine (1.5 mmol), TpRh(C2H4)2
(0.05 mmol), PPh3 (0.1 mmol), in toluene (2 mL) at 100 °C. b Yields
determined by 1H NMR spectroscopy with 1,3-dihydroisobenzofuran as an
internal standard. c For 24 h. d For 6 h.
(8) Tzalis, D.; Koradin, C.; Knochel, P. Tetrahedron Lett. 1999, 40, 6193.
(9) The addition of 2-N-methylaminopyridine to 1-decyne in the presence of
RhCl(PPh3)3 gave the corresponding anti-Markovnikov enamine in 40%
yield. In this case, the pyridine ring was essential to obtain the product.
Park, Y. J.; Kwon, B.-I.; Ahn, J.-A.; Jun, C.-H. J. Am. Chem. Soc. 2004,
126, 13892.
Scheme 2. Plausible Reaction Mechanism
(10) 1H NMR spectra of (E)- and (Z)-2a, see: Hudrlik, P. F.; Hudrlik, A. M.;
Kulkarni, A. K. Tetrahedron Lett. 1985, 26, 139.
(11) (a) Carlton, L.; Read, G. J. Chem. Soc., Perkin Trans. 1 1978, 1631. (b)
Yoshikawa, S.; Kiji, J.; Furukawa, J. Makromol. Chem. 1977, 178, 1077.
(c) Singer, H.; Wilkinson, G. J. Chem. Soc. (A) 1968, 849.
(12) [Rh(cod)2]BF4/PPh3 catalyst system gave no hydroamination product in
our reaction conditions, although Beller and co-workers reported that the
system catalyzed the reaction of phenylacetylene with morpholine to give
anti-Markovnikov adducts in 15% yield. See: Hartung, C. G.; Tillack,
A.; Trauthwein, H.; Beller, M. J. Org. Chem. 2001, 66, 6339.
(13) Fukumoto, Y.; Dohi, T.; Masaoka, H.; Chatani, N.; Murai, S. Organo-
metallics 2002, 21, 3845.
(14) All products except 2h were reduced with NaB(OAc)3H (2a-2e and 3b-
3j), LiAlH4 (2f,2g and 4b-4e), or NaBH4 (4f,4g) to isolate the corre-
sponding amines. See Supporting Information.
be included in the reaction mechanism, as shown in Scheme 2,
explaining that both primary and secondary amines add to the
terminal carbon of alkynes. A terminal alkyne reacts with a rhodium
complex to give I, which undergoes nucleophilic attack of an amine
at the R-carbon atom of I to afford an R-aminovinylrhodium
complex II.9,16 Reductive elimination from II gives the enamine
III. The aldimine IV forms either by tautomerization from III or
via the iminorhodium complex V. The reaction of 1-deuterio-1-
(15) For recent reviews on catalytic reactions that proceeded via vinylidene-
metal intermediate, see: (a) Bruneau, C.; Dixneuf, P. H. Angew. Chem.,
Int. Ed. 2006, 45, 2176. (b) Bruneau, C. In Topics in Organometallic
Chemistry; Bruneau, C., Dixneuf, P. H., Eds.; Springer: Berlin, 2004;
Vol. 11 (Ruthenium Catalysts and Fine Chemistry), pp 125-153.
(16) (a) Trost, B. M.; McClory, A. Angew. Chem., Int. Ed. 2007, 46, 2074. (b)
Fukumoto, Y.; Kinashi, F.; Kawahara, T.; Chatani, N. Org. Lett. 2006, 8,
4641.
JA075484E
9
J. AM. CHEM. SOC. VOL. 129, NO. 45, 2007 13793