C O M M U N I C A T I O N S
carboamination and cyclization process (entry 5), thus suggesting
that acid might not be playing a role in these catalytic reactions.
We are currently exploring the mechanism behind formation of
these quinolines since this type of reaction might involve, under a
catalytic process, selective C-H activation pathways to afford
multi-substituted N-heterocycles.
Acknowledgment. D.J.M. thanks Indiana UniversitysBloom-
ington, the Dreyfus Foundation, the Sloan Foundation, and the NSF
(CHE-0348941, PECASE) for financial support of this research.
The authors also thank Dr. Donald L. Morrison and Boulder
Scientific for a generous gift of [CPh3][B(C6F5)4].
Supporting Information Available: Complete experimental prepa-
ration (compounds 1-3 and organic products), and crystallographic
data (compounds 1-3, and the quinoline from entry 6, Figure 2). This
References
(1) For some comprehensive reviews on imides and their reactivity, see: (a)
Wigley, D. E. Prog. Inorg. Chem. 1994, 42, 239-482. (b) Nugent, W.
A.; Mayer, J. M. Metal-Ligand Multiple Bonds; John Wiley & Sons:
New York, 1988. (c) Gade, L. H.; Mountford, P. Coord. Chem. ReV. 2001,
216-217, 65-97. (d) Nugent, W. A.; Haymore, B. L. Coord. Chem. ReV.
1980, 31, 123-175. (e) Duncan, A. P.; Bergman, R. G. Chem. Rec. 2002,
2, 431-445.
(2) For some representative examples, see: (a) Anderson, L. L.; Arnold, J.;
Bergman, R. G. Org. Lett. 2004, 6, 2519-2522. (b) Lee, S. Y.; Bergman,
R. G. Tetrahedron 1995, 51, 4255-4276. (c) Baranger, A. M.; Walsh, P.
J.; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 2753-2763. (d) Walsh,
P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1992, 114,
1708-1719. (e) Ackermann, L. Organometallics 2003, 22, 4367-4368.
(f) Lorber, C.; Choukroun, R.; Vendier, L. Organometallics 2004, 23,
1845-1850. (g) Ward, B. D.; Maisse-Francois, A.; Mountford, P.; Gade,
L. H. Chem. Commun. 2004, 704-705. (h) Tillack, A.; Jiao, H.; Castro,
I. G.; Hartung, C. G.; Beller, M. Chem.sEur. J. 2004, 10, 2409-2420
and references therein. (i) Straub, B. F.; Bergman, R. G. Angew. Chem.,
Int. Ed. 2001, 40, 4632-4635. (j) Pohlki, F.; Doye, S. Angew. Chem.,
Int. Ed. 2001, 40, 2305-2308.
(3) Hill, J. E.; Profilet, R. D.; Fanwick, P. E.; Rothwell, I. P. Angew. Chem.,
Int. Ed. Engl. 1990, 29, 664-665.
Figure 2. Mechanism for a catalytic carboamination reaction, where the
[Ti] represents the (nacnac)Ti cation scaffold. Bottom tables depict
carboamination reactions to prepare R,â-unsaturated imines and quinolines,
respectively. In the tables, the isolated yields for the organic products are
after column chromatography.
(4) (a) Haak, E.; Bytschkov, I.; Doye, S. Angew. Chem., Int. Ed. 1999, 38,
3389-3391. (b) Pohlki, F.; Bytschkov, I.; Siebeneicher, H.; Heutling, A.;
Ko¨nig, W. A.; Doye, S. Eur. J. Org. Chem. 2004, 1967-1972. (c) For a
review on hydroamination reactions involving alkynes, see: Pohlki, F.;
Doye, S. Chem. Soc. ReV. 2003, 32, 104-114.
(5) Ong, T.-G.; Yap, G. P. A.; Richeson, D. S. Organometallics 2002, 21,
2839-2841.
(6) Zhang, Z.; Schafer, L. L. Org. Lett. 2003, 5, 4733-4736 and references
therein.
Contrary to entries 1-4, the usage of more electron-rich
aldimines (entries 5 and 6) does not afford the corresponding R,â-
unsaturated imines. Instead, triaryl-substituted quinolines are ob-
tained in good yield upon workup of the reaction mixture (Figure
2). 1H and 13C NMR spectroscopy, single-crystal X-ray diffraction
analysis (entry 6 in Figure 2), and MS data are consistent with
heterocycle product formation.14 Intuitively, quinoline production
occurs from vinylic and ortho-aryl C-H bond rupture of the R,â-
unsaturated imine with subsequent ring closure. Monitoring the
reaction mixture by 1H NMR spectroscopy (in C6D6) indicates that
the R,â-unsaturated imine forms and decays during the catalytic
process, thus suggesting that the quinoline originates from the
corresponding R,â-unsaturated imine. Independently, we found that
treatment of 1 with 1 equiv of an aldimine in the presence of the
electron-rich R,â-unsaturated imines, where R1 ) CH3 and R2 )
NMe2 (prepared according to ref 11a), generates the corresponding
quinoline (entry 5). As a result, we speculate that a putative
[(nacnac)TidNAr′(FC6H5)][B(C6F5)4] might be responsible for the
eneimine to quinoline conversion under these reaction conditions.
Although we are currently uncertain about the fate of the ortho-
and vinylic hydrogens for entries 5 and 6, the addition of base (2,6-
di-tert-butyl-4-methylpyridine, 5-20 mol %) does not inhibit the
(7) Ackermann, L.; Kaspar, L. T.; Gschrei, C. J. Org. Lett. 2004, 6, 2515-
2518.
(8) (a) Odom, A. Dalton Trans. 2005, 225-233 and references therein. (b)
Li, Y.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2004, 126, 1794-1803.
(9) Cao, C.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2003, 125, 2880-2881.
(10) Ong, T.-G.; Yap, G. P. A.; Richeson, D. S. J. Am. Chem. Soc. 2003, 125,
8100-8101.
(11) (a) Ruck, R. T.; Zuckermann, R. L.; Krska, S. W.; Bergman, R. G. Angew.
Chem., Int. Ed. 2004, 43, 5372-5374. (b) Ruck, R. T.; Bergman, R. G.
Organometallics 2004, 23, 2231-2233.
(12) A Ti(III) fluorobenzene adduct has been structurally characterized. (a)
Bouwkamp, M. W.; de Wolf, J.; del Hierro Morales, I.; Gercama, J.;
Meetsma, A.; Troyanov, S. I.; Hessen, B.; Teuben, J. H. J. Am. Chem.
Soc. 2002, 124, 10956-10957. (b) Bouwkamp, M. W.; Budzelaar, P. M.
H.; Gercama, J.; del Hierro Morales, I.; de Wolf, J.; Meetsma, A.;
Troyanov, S. I.; Teuben, J. H.; Hessen, B. J. Am. Chem. Soc. 2005, 127,
14310-14319.
(13) Basuli, F.; Clark, R. L.; Bailey, B. C.; Brown, D.; Huffman, J. C.;
Mindiola, D. J. Chem. Commun. 2005, 2250-2252.
(14) See Supporting Information for complete experimental details.
(15) (a) Lambert, J. B.; Zhang, S.; Ciro, S. M. Organometallics 1994, 13,
2430-2443. (b) Scott, V. J.; Celenligil-Cetin, R.; Ozerov, O. V. J. Am.
Chem. Soc. 2005, 127, 2852-2853.
(16) Thalladi, V. R.; Weiss, H.-C.; Blaser, D.; Boese, R.; Nangia, A.; Desiraju,
G. R. J. Am. Chem. Soc. 1998, 120, 8702-8710.
(17) (a) Polse, J. L.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1998,
120, 13405-13414. (b) Wang, H.; Chan, H.-S.; Xie, Z. Oganometallics
2005, 24, 3772-3779. (c) Vaughan G. A.; Hillhouse, G. L.; Rheingold,
A. L. J. Am. Chem. Soc. 1990, 112, 7994-8001.
JA0566026
9
J. AM. CHEM. SOC. VOL. 127, NO. 51, 2005 17993