Angewandte
Chemie
channel should be long enough to span a typical 35–40-ꢀ
phospholipid membrane.
[15] E. C. Knuf, J.-K. Jiang, M. S. Gin, J. Org. Chem. 2003, 68, 9166 –
9169.
[16] For complete experimental details, see the Supporting Informa-
tion.
cations at rates that compare with, or even exceed, those of
natural channel proteins is reported. The ability of this robust
synthetic channel to effect conductance across a hydrophobic
barrier is an important first step toward devices that take
advantage of biomimetic electrical signaling under aqueous
saline conditions. Investigations into the basis of anion
selectivity, the range of ions that are permeable, and pH
effects on ion-channel activity are currently underway.
[17] P. R. Ashton, R. Kꢁniger, J. F. Stoddart, D. Alker, V. D. Harding,
J. Org. Chem. 1996, 61, 903 – 908.
[18] a) F. G. Riddell, M. K. Hayer, Biochim. Biophys. Acta 1985, 817,
313 – 317; b) C. G. Espꢂnola, M. Delgado, J. D. Martꢂn, Isr. J.
Chem. 2000, 40, 279 – 288; c) O. Murillo, S. Watanabe, A.
Nakano, G. W. Gokel, J. Am. Chem. Soc. 1995, 117, 7665 – 7679.
[19] R. K. Gupta, P. Gupta, J. Magn. Reson. 1982, 47, 344 – 350.
[20] The concentration of the channel in the vesicles is reported as
mol% (with respect to the lipid); the lipid content was estimated
by using a modification of the Bartlett assay (details in the
Supporting Information).
Received: May 11, 2005
Revised: September 6, 2005
Published online: October 25, 2005
Keywords: anions · cyclodextrins · ion channels ·
.
nanostructures · sodium transport
[21] M. Merritt, M. Lanier, G. Deng, S. L. Regen, J. Am. Chem. Soc.
1998, 120, 8494 – 8501.
[22] The activity relative to gramicidin A was gauged using k values
obtained for 0.078 mol% of gramicidin A and 0.04 mol% of 1 as
gramicidin A forms bimolecular ion channels.
[1] a) F. M. Ashcroft, Ion Channels and Disease, Academic Press,
California, 2000, pp. 1 – 2; b) B. Hille, Ion Channels of Excitable
Membranes, 3rd ed., Sinauer, Sunderland, MA, 2001, pp. 1 – 5.
[2] a) R. Dutzler, E. B. Campbell, R. MacKinnon, Science 2003, 300,
108 – 112; b) R. B. Bass, P. Strop, M. Barclay, D. C. Rees, Science
2002, 298, 1582– 1587; c) D. A. Doyle, Trends Neurosci. 2004, 27,
298 – 302.
[3] a) S. Futaki, Y. Zhang, T. Kiwada, I. Nakase, T. Yagami, S. Oiki,
Y. Sugiura, Bioorg. Med. Chem. 2004, 12, 1343 – 1350; b) M.
Sugawara, A. Hirano, P. Bühlmann, Y. Umezawa, Bull. Chem.
Soc. Jpn. 2002, 75, 187 – 201; c) H. Bayley, P. S. Cremer, Nature
2001, 413, 226 – 230; d) B. A. Cornell, V. L. B. Braach-Maksvytis,
L. G. King, P. D. J. Osman, B. Raguse, L. Wieczorek, R. J. Pace,
Nature 1997, 387, 580 – 583.
[23] a) F. Hacket, S. Simova, H.-J. Schneider, J. Phys. Org. Chem.
2001, 14, 159 – 170; b) M. Ghosh, R. Zhang, R. G. Lawler, C. T.
Seto, J. Org. Chem. 2000, 65, 735 – 741; c) D. Vizitiu, G. R. J.
Thatcher, J. Org. Chem. 1999, 64, 6235 – 6238; d) A. V. Eliseev,
H.-J. Schneider, J. Am. Chem. Soc. 1994, 116, 6081 – 6088.
[24] a) K. Kano, J. H. Fendler, Biochim. Biophys. Acta 1978, 509,
289 – 299; b) N. R. Clement, J. M. Gould, Biochemistry 1981, 20,
1534 – 1538.
[25] Rates were obtained by fitting the curves to a first-order
exponential decay equation with the Origin 6.1 software.
[26] S. C. Hartsel, S. K. Benz, R. P. Peterson, B. S. Whyte, Biochem-
istry 1991, 30, 77 – 82.
[4] a) S. Fernandez-Lopez, H.-S. Kim, E. C. Choi, M. Delgado, J. R.
Granja, A. Khasanov, K. Kraehenbuehl, G. Long, D. A. Wein-
berger, K. M. Wilcoxen, M. R. Ghadiri, Nature 2001, 412, 452–
455; b) E. A. Porter, X. Wang, H.-S. Lee, B. Weisblum, S. H.
Gellman, Nature 2000, 404, 565.
[5] P. Kohli, M. Wirtz, C. R. Martin, Electroanalysis 2004, 16, 9 – 18.
[6] a) I. Tabushi, Y. Kuroda, K. Yokota, Tetrahedron Lett. 1982, 23,
4601 – 4604; b) M. J. Pregel, L. Jullien, J. Canceill, L. Lacombe,
J.-M. Lehn, J. Chem. Soc. Perkin Trans. 2 1995, 417 – 426.
[7] a) O. Murillo, I. Suzuki, E. Abel, C. L. Murray, E. S. Meadows, T.
Jin, G. W. Gokel, J. Am. Chem. Soc. 1997, 119, 5540 – 5549;
b) W. M. Leevy, M. E. Weber, P. H. Schlesinger, G. W. Gokel,
Chem. Commun. 2005, 89 – 91; c) T. M. Fyles, T. D. James, K. C.
Kaye, J. Am. Chem. Soc. 1993, 115, 12315 – 12321.
[27] A lower channel concentration (0.3 mol%) was used in this case
to obtain a curve amenable to fitting.
[28] A similar trend was observed with melittin, strongly supporting
the conclusion that ion channel 1 is anion selective.[16]
[29] A. Keramidas, A. J. Moorhouse, P. R. Schofield, P. H. Barry,
Prog. Biophys. Mol. Biol. 2004, 86, 161 – 204.
[30] a) M. C. Gurau, S.-M. Lim, E. T. Castellana, F. Albertorio, S.
Kataoka, P. S. Cremer, J. Am. Chem. Soc. 2004, 126, 1052 2 –
10523; b) J. N. Sachs, T. B. Woolf, J. Am. Chem. Soc. 2003, 125,
8742– 8743.
[31] Z. Qi, M. Sokabe, K. Donowaki, H. Ishida, Biophys. J. 1999, 76,
631 – 641.
[8] a) H. Ishida, Z. Qi, M. Sokabe, K. Donowaki, Y. Inoue, J. Org.
Chem. 2001, 66, 2978 – 2989; b) T. D. Clark, L. K. Buehler, M. R.
Ghadiri, J. Am. Chem. Soc. 1998, 120, 651 – 656.
[9] a) N. Yoshino, A. Satake, Y. Kobuke, Angew. Chem. 2001, 113,
471 – 473; Angew. Chem. Int. Ed. 2001, 40, 457 – 459; b) S. E.
Matthews, P. Schmitt, V. Felix, M. G. B. Drew, P. D. Beer, J. Am.
Chem. Soc. 2002, 124, 1341 – 1353.
[10] N. Djedovic, R. Ferdani, E. Harder, J. Pajewska, R. Pajewski,
P. H. Schlesinger, G. W. Gokel, Chem. Commun. 2003, 2862 –
2863.
[11] N. Sakai, D. Houdebert, S. Matile, Chem. Eur. J. 2003, 9, 2 2 3 –
232.
[12] G. Deng, T. Dewa, S. L. Regen, J. Am. Chem. Soc. 1996, 118,
8975 – 8976.
[13] Y. Kobuke, K. Ueda, M. Sokabe, J. Am. Chem. Soc. 1992, 114,
7618 – 7622.
[14] Pentabutylene glycol (2) should be approximately 33 ꢀ based on
X-ray diffraction data obtained for the analogous tributylene
glycol, see: A. D. Bedells, C. Booth, Makromol. Chem. 1991, 192,
2099 – 2110; in combination with the aminocyclodextrin, the
Angew. Chem. Int. Ed. 2005, 44, 7584 –7587
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7587