LETTER
Total Synthesis of (5S,7R)-Kurzilactone
63
The synthetic pathway begins with reaction of the acyl an-
ion equivalent, generated from the thioacetal 18, with (+)-
13 in the presence of BF3·OEt2 to afford 19 in 54% yield
(Scheme 5). Protection of the secondary alcohol of 19
proved to be critical for the success of the synthesis. For
example, acetate protection was problematic since remov-
al of the TBS group (n-Bu4NF in THF) was accompanied
by acetate migration to give a ca. 1:1 mixture of hydroxy-
acetates. Protection with a MOM group was complicated
by low yields (ca. 20%) of the protection processes carried
out under several known conditions. A solution to this
problem was found by using an ethoxyethyl group intro-
duced using ethylvinyl ether (EVE) in the presence of cat-
alytic PPTS (pyridine/p-TsOH). This produced 20 as a ca.
1:1 mixture of diastereomers in 84% yield. Removal of
the TBS group followed by introduction of the acryloyl
group afforded the RCM precursor 21. Ring-closing
metathesis19 of 21, utilizing the second generation
Grubbs’catalyst 22, furnished the lactone 23 in 95% yield.
The ethoxyethyl ether was then cleaved with 0.5 N HCl–
THF (1:1) at room temperature in good yield. Removal of
thioketal by using Hg(ClO4)2, CaCO3 in THF–H2O (5:1)20
took place in 10 minutes at 0 °C but the isolated yield of
(5S,7R)-kurzilactone (ent-2) was low (20–38%). To solve
this problem, we screened several conditions and found
that the AgNO2–I2 method21 is highly efficient. Accord-
ingly, treatment of thioacetal 23 with AgNO2–I2 in THF–
H2O (5:1) at room temperature for 4 hours led to forma-
tion of ent-2 in 62% yield. The synthetic material was
shown to have the same spectroscopic properties as with
Acknowledgment
This work was supported by the Center for Bioactive Molecular
Hybrids (CBMH) and Korea Research Foundation Grant (KRF-
2003-015-C00360).
References and Notes
(1) (a) Omura, S.; Tanaka, H. Macrolide Antibiotics: Chemistry,
Biology and Practice; Omura, S., Ed.; Academic Press: New
York, 1984, 351. (b) Sternberg, S. Science 1994, 266, 1632.
(c) Rychnovsky, S. D. Chem. Rev. 1995, 95, 2021.
(d) Nakata, T. Macrolide Antibiotics: Chemistry, Biology
and Practice, 2nd ed.; Omura, S., Ed.; Academic Press: New
York, 2002, 181.
(2) (a) Schenider, C. Angew. Chem. Int. Ed. 1998, 37, 1375.
(b) Hoffmann, W. H. Angew. Chem. Int. Ed. 2003, 42, 1096.
(3) For selected examples, see: (a) Smith, A. B.; Pitram, S. M.
Org. Lett. 1999, 1, 2001. (b) Muñoz-Torreno, D.; Brückner,
R. Eur. J. Org. Chem. 1998, 1031. (c) Narkevitch, V.;
Schenk, K.; Vogel, P. Angew. Chem. Int. Ed. 2000, 39,
1806. (d) Zarkrzewski, P.; Lau, C. K. Synlett 2003, 215.
(e) Hubbs, J. L.; Heathcock, C. H. J. Am. Chem. Soc. 2003,
125, 12836.
(4) (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis;
Wiley: New York, 1994. (b) Comprehensive Asymmetric
Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.;
Springer: New York, 1999. (c) Catalytic Asymmetric
Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley: New York, 2000.
(5) (a) Narasaka, K.; Pai, F. G. Tetrahedron 1984, 40, 2233.
(b) Chen, K.; Hardmann, G. E.; Prasad, K.; Repic, O.
Tetrahedron Lett. 1987, 28, 155. (c) Evans, D. A.;
Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988,
110, 3560.
(6) (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E.
N. Science 1997, 277, 936. (b) Schaus, S. E.; Brandes, B.
D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A.
E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002,
124, 1307.
20
the natural product. The observed optical rotation {[a]D
–85 (c 0.235, CHCl3)} was found to be opposite to that
20
reported for natural (5R,7S)-kurzilactone {[a]D +84 (c
0.231, CHCl3)}.18
(7) (a) Jansen, R.; Kunze, B.; Reichenbach, H.; Höfle, G. Eur. J.
Org. Chem. 2000, 913. (b) Kunze, B.; Jansen, R.; Sasse, F.;
Höfle, G.; Reichenbach, H. J. Antibiot. 1998, 51, 1075.
(8) Fu, X.; Sevenet, T.; Hamid, A.; Hadi, A.; Remy, F.; Pais, M.
Phytochemistry 1993, 33, 1272.
(9) Davies, H. G.; Green, R. H. Nat. Prod. Rep. 1986, 3, 87.
(10) Graul, A.; Castaner, J. Drugs Future 1997, 22, 956.
(11) (a) Burova, S. A.; McDonald, F. E. J. Am. Chem. Soc. 2002,
124, 8188. (b) Kang, B.; Chang, S. Tetrahedron 2004, 60,
7353. (c) Gupta, P.; Naidu, S. V.; Kumar, P. Tetrahedron
Lett. 2005, 46, 6571.
(+)-13
n-BuLi (2 equiv)
BF3·OEt2 (2 equiv)
OH OTBS
S
S
S
S
THF, –78 °C
(54%)
18
19
2. TBAF, THF
(99%)
1. EVE, PPTS
CH2Cl2 (84%)
EtO
EtO
O
O
(12) Kocienski, P. J.; Yeates, C.; Street, S. D. A.; Campbell, S. F.
J. Chem. Soc., Perkin Trans. 1 1987, 2183.
O
OH
O
S
S
S
S
(13) Zaks, A.; Dodds, D. R. J. Am. Chem. Soc. 1995, 117, 10419.
(14) Rádl, S.; Stach, J.; Hajiccek, J. Tetrahedron Lett. 2002, 43,
2087.
(15) The ee (%) of the resolved epoxides and diols were
determined by HPLC using the Chiralpak-OD-H column
after conversion to the corresponding para-nitrobenzoates
by Mitsunobu inversion reactions.
21
20 (~1:1)
Et3N (5 equiv)
ClCOCH=CH2 (2 equiv)
CH2Cl2
(75%)
22 (5 mol%)
CH2Cl2
(0.001 M)
reflux, 8 h
(95%)
Mes N
Cl
N Mes
Cl
Ru
Ph
PCy3
22
(16) The preference of the syn-epoxide ( )-10 over the anti-
epoxide ( )-13 in the HKR reaction is not clear at this point.
(17) Murga, J.; Falomir, E.; Carda, M.; Marco, J. M.
Tetrahedron: Asymmetry 2002, 13, 2317.
EtO
O
1. 0.5 N HCl–THF (1:1)
r.t., 1 h (99%)
(5S,7R)-
kurzilactone
O
O
S
S
2. AgNO2 (2.4 equiv)
I
2 (1.2 equiv)
THF–H2O (5:1)
r.t., 4 h (62%)
(18) Jiang, B.; Chen, Z. Tetrahedron: Asymmetry 2001, 12, 2835.
23
Scheme 5 Asymmetric total synthesis of (5S,7R)-kurzilactone
Synlett 2006, No. 1, 61–64 © Thieme Stuttgart · New York