470 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 2
Letters
(13) (a) Kolb, H. C.; Sharpless, K. B. The growing impact of click
chemistry on drug discovery. Drug DiscoVery Today 2003, 8, 1128-
1137. (b) Sivakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill,
H. N.; Wang, Q. A fluorogenic 1,3-dipolar cycloaddition reactions
of 3-azidocoumarins and acetylenes. Org. Lett. 2004, 6, 4603-4606.
(c) Brik, A.; Muldoon, J.; Lin, Y. C.; Elder, J. H.; Goodsell, D. S.;
Olson, A. J.; Fokin, V. V,; Sharpless, K. B.; Wong, C. H. Rapid
diversity-oriented synthesis in microtiter plates for in situ screening
of HIV protease inhibitors. ChemBioChem 2003, 4, 1246-1248. (d)
Best, M. D.; Brik, A.; Chapman, E.; Lee, L. V.; Cheng, W. C.; Wong,
C. H. Rapid discovery of potent sulfotransferase inhibitors by
diversity-oriented reaction in microplates followed by in situ screen-
ing. ChemBioChem 2004, 5, 811-819. (e) Brik, A.; Alexandratos,
J.; Lin, Y. C.; Elder, J. H.; Olson, A. J.; Wlodawer, A.; Goodsell, D.
S.; Wong, C. H. 1,2,3-Triazole as a peptide surrogate in the rapid
synthesis of HIV-1 protease inhibitors. ChemBioChem 2005, 6,
1167-1169.
cytotoxic/antiproliferative agents. Because of the numerous
actions of resveratrol, it is difficult to ascertain whether the
effects observed are indeed correlated with a resveratrol-like
action. Yet, it is suggestive that some of the lead compounds
did display similarities compared to resveratrol. This protocol
will allow us to generate agents that possess less promiscuity
compared to resveratrol and therefore might prove therapeuti-
cally useful.
Acknowledgment. Financial support from Universita` del
Piemonte Orientale and Regione Piemonte is gratefully ac-
knowledged.
Supporting Information Available: Synthesis of alkyne and
azide building blocks, characterization (MS and 1H and 13C NMR
data), and HPLC purities of the selected compounds, raw data
relative to Table 2, and morphological changes induced by the lead
compounds. This material is available free of charge via the Internet
(14) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: Diverse
chemical function from a few good reactions. Angew. Chem., Int.
Ed. 2001, 40, 2004-2021.
(15) (a) Rostovtsev, V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A
stepwise Huisgen cycloaddition process: copper (I) catalyzed regio-
selective “ligation” of azide and terminal alkynes. Angew. Chem.,
Int. Ed. 2002, 41, 2596-2599. (b) Tornøe, C. W.; Christensen, C.;
Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-Triazole by
regiospecific copper (I)-catalyzed 1,3-dipolar cycloaddition of ter-
minal alkynes to azide. J. Org. Chem. 2002, 67, 3057-3064. (c)
Rodionov, V. O.; Fokin, V. V.; Finn, M. G. Mechanism of the
ligation-free CuI-catalyzed azide-alkyne cycloaddition reaction.
Angew. Chem., Int. Ed. 2005, 44, 2210-2215.
References
(1) Ferrieres, J. The French paradox: lessons for other countries. Heart
2004, 90, 107-111.
(2) Bradamante, S.; Barenghi, L.; Villa, A. Cardiovascular protective
effects of resveratrol. CardioVasc. Drug ReV. 2004, 22, 169-188.
(3) Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.;
Beecher, C. W.; Fong, H. H.; Farnsworth, N. R.; Kinghorn, A. D.;
Mehta, R. G.; Moon, R. C.; Pezzuto, J. M. Cancer chemopreventive
activity of resveratrol, a natural product derived from grapes. Science.
1997, 275, 218-220.
(16) Mosmann, T. Rapid colorimetric assay for cellular growth and
survival: application to proliferation and cytotoxicity assays. J.
Immunol. Methods 1983, 65, 55-63.
(17) (a) Pettit, G. R.; Grealish, M. P.; Jung, M. K.; Hamel, E.; Pettit, R.
K.; Chapuis, J. C.; Schmidt, J. M. Antineoplastic agents. 465.
Structural modification of resveratrol: sodium resveratrin phosphate.
J. Med. Chem. 2002, 45, 2534-2542. (b) Roberti, M.; Pizzirani, D.;
Simoni, D.; Rondanin, R.; Baruchello, R.; Bonora, C.; Buscami, F.;
Grimaudo, S.; Tolomeo, M. Synthesis and biological evaluation of
resveratrol and analogues as apoptosis-inducing agents. J. Med. Chem.
2003, 46, 3546-3554. (c) Cardile, V.; Lombardo, L.; Spatafora, C.;
Trincali, C. Chemo-enzymatic synthesis and cell-growth inhibition
activity of resveratrol analogues. Bioorg. Chem. 2005, 33, 22-33.
(18) Miller, A. O.; Furin, G. G. Reaction of polyfluoro aromatic
compounds with sodium nitrite. Zh. Org. Khim. 1989, 25, 355-357.
(19) Azios, N. G.; Dharmawardhane, S. F. Resveratrol and estradiol exert
disparate effects on cell migration, cell surface actin structures, and
focal adhesion assembly in MDA-MB-231 human breast cancer cells.
Neoplasia 2005, 7, 128-140.
(20) Pozo-Guisado, E.; Alvarez-Barrientos, A.; Mulero-Navarro, S.;
Santiago-Josefat, B.; Fernandez-Salguero, P. M. The antiproliferative
activity of resveratrol results in apoptosis in MCF-7 but not in MDA-
MB-231 human breast cancer cells: cell-specific alteration of the
cell cycle. Biochem. Pharmacol. 2002, 64, 1375-1386.
(21) Bernhard, D.; Tinhofer, I.; Tonko, M.; Hu¨bl, H.; Ausserlechner, M.
J.; Greil, R.; Kofler, R.; Csordas, A. Resveratrol causes arrest in the
S-phase prior to Fas-independent apoptosis in CEM-C7H2 acute
leukemia cells. Cell Death Differ. 2000, 7, 834-842.
(4) Shazib, P. Resveratrol: from grapevines to mammalian biology.
FASEB J. 2003, 17, 1975-1985.
(5) Aggarwal, B.; Bhardwaj, A.; Aggarwal, R. S.; Seeram, N. P.;
Shishodia, S.; Takada, Y. Role of resveratrol in prevention and
therapy of cancer: preclinical and clinical studies. Anticancer Res.
2004, 24, 2783-2840.
(6) Murias, M.; Handler, N.; Erker, T.; Pleban, K.; Ecker, G.; Saiko, P.;
Szekeres, T.; Jager, W. Resveratrol analogues as selective cyclooxy-
genase-2 inhibitors: synthesis and structure-activity relationship.
Bioorg. Med. Chem. 2004, 12, 5571-5578.
(7) Scarlatti, F.; Sala, G.; Somenzi, G.; Signorelli, P.; Sacchi, N.; Ghidoni,
R. Resveratrol induces growth inhibition and apoptosis in metastatic
breast cancer cells via de novo ceramide signaling. FASEB J. 2003,
17, 2339-2341.
(8) Bode, A. M.; Dong, Z. Signal transduction pathways: targets for
chemoprevention of skin cancer. Lancet Oncol. 2000, 1, 181-188.
(9) Mnjoyan, Z. H.; Fujise, K. Profound negative regulatory effects by
resveratrol on vascular smooth muscle cells: a role of p53-p21-
(WAF1/CIP1) pathway. Biochem. Biophys. Res. Commun. 2003, 311,
546-552.
(10) Ulrich, S.; Wolter, F.; Stein, J. M. Molecular mechanisms of the
chemopreventive effects of resveratrol and its anolagues in carcino-
genesis. Mol. Nutr. Food Res. 2005, 49, 452-461.
(11) Orsini, F.; Verotta, L.; Lecchi, M.; Restano, R.; Curia, G.; Redaelli,
E.; Wanke, E. Resveratrol derivatives and their role as potassium
channels modulators. J. Nat. Prod. 2004, 67, 421-426.
(12) Klinge, C. M.; Blankenship, K. A.; Risinger, K. E.; Bhatnagar, S.;
Noisin, E. L.; Sumanasekera, W. K.; Zhao, L.; Brey, D. M.; Keynton,
R. S. Resveratrol and estradiol rapidly activate MAPK signaling
through estrogen receptors alpha and beta in endothelial cells. J. Biol.
Chem. 2005, 280, 7460-7468.
(22) Hsieh, H. P.; Liou, J. P.; Mahindroo, N. Pharmaceutical design of
antimitotic agents based on combretastatins. Curr. Pharm. Des. 2005,
11, 1655-1677.
JM051118Z