Organic Letters
Letter
(7) Nomura, K.; Matsubara, S. Preparation of Zinc−Homoenolate
from α-Sulfonyloxy Ketone and Bis(iodozincio)methane. Chem. Lett.
2007, 36, 164−165.
catalyzed cyclopropanol ring-opening reaction. Tetrahedron Lett.
2010, 51, 6726−6729.
(21) Rosa, D.; Orellana, A. Palladium-Catalyzed Cross-Coupling of
Cyclopropanols with Aryl Halides Under Mild Conditions. Org. Lett.
2011, 13, 110−113.
(8) Das, P. P.; Belmore, K.; Cha, J. K. SN2′ Alkylation of
Cyclopropanols via Homoenolates. Angew. Chem., Int. Ed. 2012, 51,
9517−9520.
(22) This is consistent with reaction times observed in other
couplings of redox-active N-hydroxyphthalimide esters: Toriyama, F.;
Cornella, J.; Wimmer, L.; Chen, T.-G.; Dixon, D. D.; Creech, G.;
Baran, P. S. Redox-Active Esters in Fe-Catalyzed C−C Coupling. J.
Am. Chem. Soc. 2016, 138, 11132−11135.
(23) Product 3j can be demethylated to arrive at the natural product
in one step: Kundu, K.; Nayak, S. K. Total Syntheses of
Malabaricones B and C via a Cross-Metathesis Strategy. J. Nat.
Prod. 2017, 80, 1776−1782.
(24) For pioneering references, see: (a) DePuy, C. H.; Van Lanen,
R. J. Reactions of Cyclopropanols with Halogenating Agents and
Other Electrophiles. J. Org. Chem. 1974, 39, 3360−3365. (b) Ito, Y.;
Fujii, S.; Saegusa, T. Reaction of 1-Silyloxybicyclo[n.1.0]alkanes with
FeIIICl3. A Facile Synthesis of 2-Cycloalkenones via Ring Enlargement
of Cyclic Ketones. J. Org. Chem. 1976, 41, 2073−2074.
(25) Burdge, H. E.; Oguma, T.; Kawajiri, T.; Shenvi, R. A. Concise
synthesis of GB22 by endo-selective siloxycyclopropane arylation.
(9) (a) Ye, Z.; Gettys, K. E.; Shen, X.; Dai, M. Copper-Catalyzed
Cyclopropanol Ring Opening Csp3−Csp3 Cross-Couplings with
(Fluoro)Alkyl Halides. Org. Lett. 2015, 17, 6074−6077. (b) Ye, Z.;
Cai, X.; Li, J.; Dai, M. Catalytic Cyclopropanol Ring Opening for
Divergent Syntheses of γ-Butyrolactones and δ-Ketoesters Containing
All-Carbon Quaternary Centers. ACS Catal. 2018, 8, 5907−5914.
(10) For β-installation of fluoroalkyl substituents, see: (a) Li, Y.; Ye,
Z.; Bellman, T. M.; Chi, T.; Dai, M. Efficient Synthesis of β-CF3/
SCF3-Substituted Carbonyls via Copper-Catalyzed Electrophilic Ring-
Opening Cross-Coupling of Cyclopropanols. Org. Lett. 2015, 17,
2186−2189. (b) Kananovich, D. G.; Konik, Y. A.; Zubrytski, D. M.;
̈
Jarving, I.; Lopp, M. Simple access to β-trifluoromethyl-substituted
ketones via copper-catalyzed ring-opening trifluoromethylation of
substituted cyclopropanols. Chem. Commun. 2015, 51, 8349−8352.
(c) He, X.-P.; Shu, Y.-J.; Dai, J.-J.; Zhang, W. M.; Feng, Y. S.; Xu, H. J.
Copper-catalysed ring-opening trifluoromethylation of cyclopropa-
nols. Org. Biomol. Chem. 2015, 13, 7159−7163. (d) Konik, Y. A.;
(26) Ni, S.; Padial, N. M.; Kingston, C.; Vantourout, J. C.; Schmitt,
D. C.; Edwards, J. T.; Kruszyk, M. M.; Merchant, R. R.; Mykhailiuk, P.
K.; Sanchez, B. B.; Yang, S.; Perry, M. A.; Gallego, G. M.; Mousseau, J.
J.; Collins, M. R.; Cherney, R. J.; Lebed, P. S.; Chen, J. S.; Qin, T.;
Baran, P. S. A Radical Approach to Anionic Chemistry: Synthesis of
Ketones, Alcohols, and Amines. J. Am. Chem. Soc. 2019, 141, 6726−
6739.
̈
Kudrjashova, M.; Konrad, N.; Kaabel, S.; Jarving, I.; Lopp, M.;
Kananovich, D. G. Two-step conversion of carboxylic esters into
distally fluorinated ketones via ring cleavage of cyclopropanol
intermediates: application of sulfinate salts as fluoroalkylating
reagents. Org. Biomol. Chem. 2017, 15, 4635−4643.
(11) For an example of Pd-catalyzed benzylation of cyclopropanol-
derived homoenolates, see: Nithiy, N.; Orellana, A. Palladium-
Catalyzed Cross-Coupling of Benzyl Chlorides with Cyclopropanol-
Derived Ketone Homoenolates. Org. Lett. 2014, 16, 5854−5857.
(12) For a report on the Co-catalyzed hydroalkylation of oxabicyclic
alkenes, see: Yang, J.; Sekiguchi, Y.; Yoshikai, N. Cobalt-Catalyzed
Enantioselective and Chemodivergent Addition of Cyclopropanols to
Oxabicyclic Alkenes. ACS Catal. 2019, 9, 5638−5644.
(13) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.;
Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S.
Practical Ni-Catalyzed Aryl−Alkyl Cross-Coupling of Secondary
Redox-Active Esters. J. Am. Chem. Soc. 2016, 138, 2174−2177.
(14) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.;
Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.;
Ackerman, L. K. G.; Weix, D. J. Decarboxylative Cross-Electrophile
Coupling of N-Hydroxyphthalimide Esters with Aryl Iodides. J. Am.
Chem. Soc. 2016, 138, 5016−5019.
(27) Park, S.-B.; Cha, J. K. Palladium-Mediated Ring Opening of
Hydroxycyclopropanes. Org. Lett. 2000, 2, 147−149.
(28) The “transmetalation-first” pathway proposed here is informed
by typical reaction mechanisms for Ni(I)/Ni(III) catalytic cycles,
though it is also possible that ligand exchange occurs after oxidative
addition. We favor the pathway proposed for two empirical reasons:
(1) side products arising from side reactions of the NHPI ester
(reduced and homocoupled dimer side products) have been virtually
undetected in this reaction, suggesting that 2 is consumed at a stage in
the catalytic cycle where product formation is possible and facile; (2)
unproductive protodemetalation from a homoenolate intermediate
such as 8 seems likely in the case where the Ni catalyst has interacted
with 1 but not 2, i.e., where product formation is not facile, and this
unproductive pathway can explain the major ring-opened side product
in this reaction.
(15) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.;
Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. A general
alkyl-alkyl cross-coupling enabled by redox- active esters and alkylzinc
reagents. Science 2016, 352, 801−805. See also references cited
therein.
(16) For a review, see: Murarka, S. N-(Acyloxy)phthalimides as
Redox-Active Esters in Cross-Coupling Reactions. Adv. Synth. Catal.
2018, 360, 1735−1753.
(17) For examples of Ni-catalyzed Negishi reactions of preformed
Zn homoenolates, see: (a) Reference 1a. (b) Rogers, R. L.; Moore, J.
L.; Rovis, T. Alkene-Directed Regioselective Nickel-Catalyzed Cross-
Coupling of Cyclic Anhydrides with Diorganozinc Reagents. Angew.
Chem., Int. Ed. 2007, 46, 9301−9304.
(18) Parida, B. B.; Das, P. P.; Niocel, M.; Cha, J. K. C-Acylation of
Cyclopropanols: Preparation of Functionalized 1,4-Diketones. Org.
Lett. 2013, 15, 1780−1783.
(19) Zhang, J.-J.; Yang, J.-C.; Guo, L.-N.; Duan, X.-H. Visible-Light-
Mediated Dual Decarboxylative Coupling of Redox-Active Esters with
α,β-Unsaturated Carboxylic Acids. Chem. - Eur. J. 2017, 23, 10259−
10263.
(20) (a) Hoberg, J. O.; Jennings, P. W. Platinum(II)-Catalyzed
Isomerization of Alkoxycyclopropanes to Alkylated Ketones. Organo-
metallics 1996, 15, 3902−3904. (b) Ziegler, D. T.; Steffens, A. M.;
Funk, T. W. Synthesis of α-methyl ketones by a selective, iridium-
E
Org. Lett. XXXX, XXX, XXX−XXX