C O M M U N I C A T I O N S
Table 2. Elaboration of Coupling Product 6ba
Acknowledgment is made to the Welch Foundation, Johnson
& Johnson, and the NIH-NIGMS (RO1-GM69445) for partial
support of this research.
Supporting Information Available: Single crystal X-ray diffraction
data for derivatives of 6d and 6f, and ESI-MS data. Spectral data for
all new compounds. This material is available free of charge via the
References
(1) Thayer, A. M. Chem. Eng. News 2005, 83, 40.
(2) For hydrogen-mediated C-C bond formations developed in our lab, see:
(a) Jang, H.-Y.; Huddleston, R. R.; Krische, M. J. J. Am. Chem. Soc.
2002, 124, 15156. (b) Huddleston, R. R.; Krische, M. J. Org. Lett. 2003,
5, 1143. (c) Koech, P. K.; Krische, M. J. Org. Lett. 2004, 6, 691. (d)
Marriner, G. A.; Garner, S. A.; Jang, H.-Y.; Krische, M. J. J. Org. Chem.
2004, 69, 1380. (e) Jang, H.-Y.; Huddleston, R. R.; Krische, M. Angew.
Chem., Int. Ed. 2003, 42, 4074. (f) Jang, H.-Y.; Huddleston, R. R.; Krische,
M. J. J. Am. Chem. Soc. 2004, 126, 4664. (g) Huddleston, R. R.; Jang,
H.-Y.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 11488. (h) Jang, H.-
Y.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 7875. (i) Jang, H.-Y.;
Hughes, F. W.; Gong, H.; Zhang, J.; Brodbelt, J. S.; Krische, M. J. Am.
Chem. Soc. 2005, 127, 6174. (j) Kong, J.-R.; Cho, C.-W.; Krische, M. J.
J. Am. Chem. Soc. 2005, 127, 11269.
a Cited yields are of pure isolated material and represent the average
of two runs. See Supporting Information for detailed experimental pro-
cedures.
These conditions are applicable to the reductive coupling of
conjugated enynes 1a-7a to methyl and ethyl pyruvate.16 Other
R-ketoesters also participate, as demonstrated by the coupling of
enyne 3a to afford products 3c-3f, which are obtained in high
yield and good to excellent enantiomeric excess. In all cases, the
diene containing coupling products are not subject to over-reduction
under the conditions of hydrogen-mediated coupling, and the
trisubstituted alkene forms as a single geometrical isomer (Table
1). The functional group array presented by the reductive coupling
products offers numerous prospects for further elaboration. For
example, the diene containing side chain of 6b is subject to selective
reduction (6c, 6d), selective oxidation (6e, 6f, 6h), and alkene cross-
metathesis (6g) (Table 2). The absolute and relative stereochemical
assignments of all new compounds are based upon X-ray diffraction
analysis of the amides derived from compounds 6d and 6f with
(R)-1-(2-naphthyl)ethylamine.
Reductive coupling of enyne 6a and ethyl pyruvate under a
deuterium atmosphere provides deuterio-6b. This result is consistent
with a catalytic mechanism involving oxidative coupling followed
by hydrogenolytic cleavage of the resulting metallacycle via σ-bond
metathesis. Even when using 50 mol % loadings of Brønsted acid
under otherwise standard conditions that involve 2 mol % loadings
of the rhodium catalyst, clean monodeuteration persists. This result
excludes mechanisms involving protonolytic cleavage of the
rhodium-carbon bond of the oxametallacycle and suggests a
plausible role for the acidic additive might involve protonolytic
cleavage of the rhodium-oxygen bond. Alternatively, protonation
of the pyruvate may facilitate oxidative coupling by lowering the
LUMO of the ketone partner. Oxidative coupling is suggested
further by ESI-MS analysis of the coupling reaction of Boc-
protected enyne 1a and phenyl glyoxal using a Rh(COD)2OTf-
BIPHEP catalyst.17 Here, the mass of the most abundant ion
observed matches that of Rh(BIHPEP)(1a)(phenylglyoxal) or Rh-
(BIPHEP)(metallacycle). Hydride intermediates are not observed.
(3) Prior to our work, the following hydrogen-mediated C-C bond formations
under CO-free conditions were reported: (a) Molander, G. A.; Hoberg,
J. O J. Am. Chem. Soc. 1992, 114, 3123. (b) Kokubo, K.; Miura, M.;
Nomura, M. Organometallics 1995, 14, 4521.
(4) For reviews, see: (a) Pu, L.; Yu, H. B. Chem. ReV. 2001, 101, 757. (b)
Walsh, P. J. Acc. Chem. Res. 2003, 36, 739. (c) Denmark, S. E.; Fu, J.
Chem. ReV. 2003, 103, 2763.
(5) For reviews, see: (a) Pu, L. Tetrahedron 2003, 59, 9873. (b) Betancort,
J. M.; Garcia, C.; Walsh, P. J. Synlett 2004, 749. (c) Us, M.; Ramon, D.
J. Angew. Chem., Int. Ed. 2004, 43, 284.
(6) For catalytic enantioselective vinylation of aldehydes via tandem alkyne
hydrometalation-transmetalation, see: (a) Oppolzer, W.; Radinov, R.
HelV. Chim. Acta 1992, 75, 170. (b) Oppolzer, W.; Radinov, R. J. Am.
Chem. Soc. 1993, 115, 1593. (c) Soai, K.; Takahashi, K. J. Chem. Soc.,
Perkin Trans. 1 1994, 1257. (d) Wipf, P.; Xu, W. Tetrahedron Lett. 1994,
35, 5197. (e) Wipf, P.; Xu, W. Org. Synth. 1996, 74, 205. (f) Wipf, P.;
Ribe, S. J. Org. Chem. 1998, 63, 6454. (g) Oppolzer, W.; Radinov, R.
N.; El-Sayed, E. J. Org. Chem. 2001, 66, 4766. (h) Dahmen, S.; Brase,
S. Org. Lett. 2001, 3, 4119. (i) Ji, J.-X.; Qiu, L.-Q.; Yip, C. W.; Chan, A.
S. C. J. Org. Chem. 2003, 68, 1589. (j) Lurain, A. E.; Walsh, P. J. J. Am.
Chem. Soc. 2003, 125, 10677. (k) Ko, D.-H.; Kang, S.-W.; Kim, K. H.;
Chung, Y.; Ha, D.-C. Bull. Korean Chem. Soc. 2004, 25, 35. (l) Jeon,
S.-J.; Chen, Y. K.; Walsh, P. J. Org. Lett. 2005, 7, 1729.
(7) For reviews, see: (a) Wipf, P.; Kendall, C. Chem. Eur. J. 2002, 8, 1779-
1784. (b) Wipf, P.; Nunes, R. L. Tetrahedron 2004, 60, 1269-1279.
(8) Activated ketones: (vinylation) (a) Chavez, D. E.; Jacobsen, E. N. Angew.
Chem., Int. Ed. 2001, 40, 3667. (b) Wipf, P.; Stephenson, C. R. J. Org.
Lett. 2003, 5, 2449. (dialkylzincs) (c) Wieland, L. C.; Deng, H.; Snapper,
M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 15453 and references
therein.
(9) Unactivated ketones: (a) Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2004,
126, 6538. (b) Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2005, 127, 8355.
(10) Alkenes: (a) Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1995,
117, 6785. (b) Crowe, W. E.; Rachita, M. J. J. Am. Chem. Soc. 1995,
117, 6787. (c) Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1996,
118, 3182.
(11) Alkynes and dienes (reviews): (a) Montgomery, J. Acc. Chem. Res. 2000,
33, 467. (b) Montgomery, J.; Amarashinghe, K. K. D.; Chowdhury, S.
K.; Oblinger, E.; Seo, J.; Savchenko, A. V. Pure Appl. Chem. 2002, 74,
129. (c) Ikeda, S.-I. Angew. Chem., Int. Ed. 2003, 42, 5120. (d) Miller,
K. M.; Molinaro, C.; Jamison, T. F. Tetrahedron: Asymmetry 2003, 3619.
(e) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890.
(12) Allenes: Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 7320.
(13) Enones (reviews): (a) Huddleston, R. R.; Krische, M. J. Synlett 2003,
12. (b) Jang, H.-Y.; Krische, M. J. Eur. J. Org. Chem. 2004, 3953.
(14) 1,3-Enynes: (a) Miller, K. M.; Luanphaisarnnont, T.; Molinaro, C.;
Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 4130. (b) Miller, K. M.;
Jamison, T. F. Org. Lett. 2005, 7, 3077.
(15) Alkyne-imine coupling: (a) Patel, S. J.; Jamison, T. F. Angew. Chem.,
Int. Ed. 2003, 42, 1364. (b) Patel, S. J.; Jamison, T. F. Angew. Chem.,
Int. Ed. 2004, 43, 3941.
(16) Exposure of ethyl pyruvate to cyclohexadiene or diphenylbutadiyne under
these precise conditions provides only trace quantities of reductive coupling
product.
(17) See Supporting Information for ESI-MS data.
JA056474L
9
J. AM. CHEM. SOC. VOL. 128, NO. 3, 2006 719