C O M M U N I C A T I O N S
Table 2. Enantioselective Nitroaldol Addition of Nitromethane to
R-Ketoester 2 Catalyzed by QD-1d and Q-1d (in parentheses)a
aziridines 7 are valuable intermediates for the synthesis of optically
active R,R-disubstituted R-amino acids. It should be noted that
R-methylcysteine (8j) was the key intermediate in the total syntheses
of mirabazoles and thiangazole.11 The ability of 1d to promote
highly enantioselective nitroaldol reaction for a wide range of
R-ketoesters 2 should facilitate the preparations of analogues of
these antitumor and anti-HIV natural products.
In conclusion, we have developed the first efficient organocata-
lytic enantioselective nitroaldol reaction with ketones using a new
C6′-OH cinchona alkaloid 1d. Employing a relatively low loading
of an easily accessible and recyclable chiral catalyst and affording
high enantioselectivity for a wide range of R-ketoesters 2, the
reaction should provide a broadly useful approach for the asym-
metric synthesis of chiral compounds containing tetrasubstituted
carbon stereocenters. The current study also reveals for the first
time that the C6′-OH cinchona alkaloids 1 are highly efficient
catalysts for enantioselective 1,2-additions to carbonyls.
Acknowledgment. We are grateful for the generous financial
support from National Institutes of Health (GM-61591).
Supporting Information Available: Experimental procedures and
characterization of the products. This material is available free of charge
a Unless noted, reactions were run with 0.5 mmol of 2, 5 mmol of
CH3NO2 in 0.5 mL of CH2Cl2 with 5 mol % QD-1d; the results in
parentheses were obtained with Q-1d to give opposite enantiomer; see
Supporting Information for details. b Isolated yield. c Determined by HPLC
analysis. d The absolute configuration is determined to be S; see Supporting
Information for details.
References
(1) For reviews, see: (a) Luzio, F. A. Tetrahedron 2001, 57, 915-945. (b)
Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York,
2001. (c) Seebach, D.; Beck, A. K.; Mukhopadhyay, T.; Thomas, E. HelV.
Chim. Acta 1982, 65, 1101-1133.
(2) For a recent review of catalytic asymmetric nitroaldol reactions, see:
Palomo, C.; Oiarbide, M.; Mielgo, A. Angew. Chem., Int. Ed. 2004, 43,
5442-5444.
Scheme 2. Asymmetric Synthesis of â-Lactam, Aziridine, and
R-Methylcysteine Derivatives (see Supporting Information for
details)a
(3) (a) Sasai, H.; Suzuki, T.; Arai, S.; Shibasaki, M. J. Am. Chem. Soc. 1992,
114, 4418-4420. (b) Shibasaki, M.; Yoshikawa, N. Chem. ReV. 2002,
102, 2187-2209. (c) Trost, B.; Yeh, V. S. C. Angew. Chem., Int. Ed.
2002, 41, 861-863. (d) Trost, B.; Yeh, V. S. C.; Ito, H.; Bremeyer, N.
Org. Lett. 2002, 4, 2621-2623. (e) Evans, D. A.; Seidel, D.; Rueping,
M.; Lam, H. W.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2003,
125, 12692-12693. (f) Palomo, C.; Oiarbide, M.; Laso, A. Angew. Chem.,
Int. Ed. 2005, 44, 3881-3884. (g) Corey, E. J.; Zhang, F.-Y. Angew.
Chem., Int. Ed. 1999, 38, 1931-1934. (h) Ooi, T.; Doda, K.; Maruoka,
K. J. Am. Chem. Soc. 2003, 125, 2054-2055.
(4) (a) Christensen, C.; Juhl, K.; Jørgensen, K. A. Chem. Commun. 2001,
2222-2223. (b) Christensen, C.; Juhl, K.; Hazell, R. G.; Jørgensen, K.
A. J. Org. Chem. 2002, 67, 4875-4881. (c) Misumi, Y.; Bulman, R. A.;
Matsumoto, K. Heterocycles 2002, 56, 599-606. (d) Lu, S. F.; Du, D.
M.; Zhang, S. W.; Xu, J. X. Tetrahedron: Asymmetry 2004, 15, 119-
126. (e) Du. D. M.; Lu, S. F.; Fang, T.; Xu, J. X. J. Org. Chem. 2005, 70,
3712-3715.
a Conditions: (a) Raney Ni, H2 (1 atm); (b) i-PrMgCl, 38% yield over
two steps; (c) TfN3, CuSO4(cat.), for 6c, 84% yield over two steps; for 6j,
63% yield over two steps; (d) PPh3, CH3CN, for 7c, 80% yield; for 7j,
71% yield; (e) BF3‚Et2O, p-methoxybenzyl mercaptan, 56% yield.
(5) For a recent review on catalytic asymmetric aza-Henry reactions, see:
Westermann, B. Angew. Chem., Int. Ed. 2003, 42,151-153.
(6) For recent examples of catalytic asymmetric aza-Henry reactions with
organic catalysts see: (a) Yoon, T. P.; Jacobsen, E. N. Angew. Chem.,
Int. Ed. 2005, 44, 466-468. (b) Nugent, B. M.; Yoder, R. A.; Johnston,
J. N. J. Am. Chem. Soc. 2004, 126, 3418-3419. (c) Okino, T.; Nakamura,
S.; Furukawa, T.; Takemoto, Y. Org. Lett. 2004, 6, 625-627.
(7) (a) Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126,
9906-9907. (b) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.;
Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed. 2005, 44, 105-108. (c)
Liu, X.; Li, H.; Deng, L. Org. Lett. 2005, 7, 167-169. (d) Li, H.; Song,
J.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2005, 127, 8948-8949.
(8) For preparations of Q-1d and QD-1d, see Supporting Information.
(9) Under the same condition, the addition of nitroethane to 2c with Q-1d
afforded the 1,2-adducts in 4/1 dr and in 75% ee/88% ee, respectively;
acetophenone was found to be inactive for the 1-catalyzed nitroaldol
reaction with nitromethane.
cinchona alkaloid bearing a C9-OBz group (QD-1d) is even more
effective than 1a-c. The addition of nitromethane to 2a with either
QD-1d or Q-1d occurred in 97% ee (entries 9 and 10, Table 1). It
is noteworthy that the preparation of 1d employs significantly
cheaper reagents than those required for the preparation of 1c.8
With 5.0 mol % of 1d, excellent enantioselectivity and high yield
could be attained not only for alkenyl R-ketoesters 2a,b but also
for a broad range of aryl and alkyl R-ketoesters 2c-m (Table 2).9
Thus, the enantioselectivity of 1d is insensitive to either the steric
or the electronic properties of 2. The unprecedented excellent
enantioselectivity obtained with R-ketoestes 2 bearing alkenyl,
electron-rich aryl and sterically bulky alkyl groups is noteworthy.
Among them 2a, 2d, and 2l were previously reported to react with
nitromethane in 57-77% ee with existing catalyst systems, and
enantioselective nitroaldol reaction was not documented for 2b, 2e,
and 2m.4a,b,e
(10) (a) Greenlee, W. J.; Springer, J. P.; Patchett, A. A. J. Med. Chem. 1989,
32, 165-170. (b) Kiyota, H.; Takai, T.; Saitoh, M.; Nakayama, O.; Oritani,
T.; Kuwahara, S. Tetrahedron Lett. 2004, 45, 8191-8194.
(11) (a) Pattenden, G.; Thom, S. M. Synlett 1992, 533-534. (b) Mulqueen, G.
C.; Pattenden, G.; Whiting, D. A. Tetrahedron 1993, 49, 5359-5364. (c)
Boyce, R. J.; Pattenden, G. Synlett 1994, 587-588. (d) Boyce, R. J.;
Mulqueen, G. C.; Pattenden, G. Tetrahedron Lett. 1994, 35, 5705-5708.
(e) Parsons, R. L.; Heathcock, C. H. Tetrahedron Lett. 1994, 35, 1379-
1382. (f) Parsons, R. L.; Heathcock, C. H. Tetrahedron Lett. 1994, 35,
1383-1384. (g) Parsons, R. L.; Heathcock, C. H. J. Org. Chem. 1994,
59, 4733-4734. (h) Shao, H.; Zhu, Q.; Goodman, M. J. Org. Chem. 1995,
60, 790-791.
We have applied the 1d-catalyzed nitroaldol reaction to develop
new and concise asymmetric syntheses of synthetically important
chiral intermediates, such as aziridines 7 and â-lactams 5 (Scheme
2).10 As shown by the conversion of 7j to 8j, optically active
JA057237L
9
J. AM. CHEM. SOC. VOL. 128, NO. 3, 2006 733