SCHEME 1. Possible Stepwise Oxidation of Alkynes to
r-Dicarbonyl Derivatives
Practical Method for Transforming Alkynes into
r-Diketones
Zhonghui Wan,* Chauncey D. Jones, David Mitchell,
John Y. Pu, and Tony Y. Zhang
Global Chemical Process Research and DeVelopment,
Eli Lilly and Company, Lilly Corporate Center,
Indianapolis, Indiana 46285
require high temperature (usually >150 °C) and are thus
considered potentially hazardous, transition-metal-catalyzed
oxidations7 have their substrate limitations, and oxidation via
ozonolysis8 requires cryogenic reaction conditions. Obviously,
as a result of these drawbacks and limitations of the existing
methods, a practical and general method for oxidizing alkynes
to R-dicarbonyl derivatives is highly desirable. Such a method
should utilize mild reaction conditions and avoid the use of
stoichiometric inorganic oxidants as well as toxic transition-
metal catalysts.
ReceiVed August 25, 2005
Our approach is based on the consideration outlined in
Scheme 1. We envisioned that the difficulty associated with
the direct oxidation of an alkyne triple bond to the R-dicarbonyls
can be circumvented by a stepwise approach, such as the
possibility of first hydrating an alkyne 1 to the monoketone 3
and/or 4, followed by oxidizing 3 and/or 4 into the dicarbonyl
2.
In the literature, there are numerous reports of alkyne
hydration under either acid9 or transition-metal catalysis.10 In
our case, the most attractive result was reported by Shvo and
Menashe.11 They found that electron-rich alkynes 1 could be
“hydrated” to form monoketones 3 and/or 4 by pure formic acid
without any catalyst, while electron-poor alkynes needed
transition-metal catalysis. These results indicated the role of
formic acid serving as a formal and efficient “water donor” for
alkyne hydrations. There are also numerous methods12 to
transform the monoketones 3 and/or 4 to the dicarbonyls 2. We
were particularly intrigued by the DMSO-based oxidations
reported by Kornblum and co-workers13 and further developed
by Floyd and co-workers,14 which appear to fit the criteria set
forth for this method development effort and appear to be
compatible with the alkyne hydration conditions.
Oxidation of alkynes to R-dicarbonyl derivatives through a
convenient one-pot procedure via a Brønsted acid-promoted
“hydration” and a DMSO-based oxidation sequence has been
achieved in high yields. The scope and limitations of the
reaction have also been investigated.
R-Dicarbonyl derivatives are versatile building blocks capable
of undergoing a variety of chemical transformations,1 especially
for the synthesis of biologically active heterocyclic compounds.2
Several approaches3 have been reported to prepare the R-di-
carbonyl derivatives. The direct oxidation of properly substituted
alkynes, which are easily accessible via Sonogashira coupling,4
appears to be the most straightforward method to synthesize
the R-dicarbonyl derivatives. However, the frequently used
potassium permanganate oxidation5 is neither environmentally
benign nor operatively efficient, the DMSO-based oxidations6
(1) (a) Babudri, F.; Fiandanese, V.; Marchese, G.; Punzi, A. Tetrahadron
Lett. 1995, 40, 7305-7308 and references cited therein. (b) De Kimpe, N.;
Stanoeva, E.; Boeykens, M. Synthesis 1994, 427-431 and references cited
therein.
(2) (a) Barta, T. E.; Stealey, M. A.; Collins, P. W.; Weier, R. M. Bioorg.
Med. Chem. Lett. 1998, 8, 3443-3448. (b) Callahan, J. M.; Burgess, J. L.;
Fornwald, J. A.; Gaster, L. M.; Harling, J. D.; Harrington, F. P.; Heer, J.;
Kwon, C.; Lehr, R.; Mathur, A.; Olson, B. A.; Weinstock, J.; Laping, N. J.
J. Med. Chem. 2002, 45, 999-1001. (c) McKenna, J. M.; Halley, F.;
Souness, J. E.; McLay, I. M.; Pickett, S. D.; Collis, A. J.; Page, K.; Ahmed,
I. J. Med. Chem. 2002, 45, 2173. (d) Singh, S. K.; Saibaba, V.; Ravikumar,
V.; Rudrawar, S. V.; Daga, P.; Rao, C. S.; Akhila, V.; Hegde, P.; Rao, Y.
K. Bioorg. Med. Chem. 2004, 12, 1881-1893.
(3) Katritzky, A. R.; Zhang, D.; Kirichenko, K. J. Org. Chem. 2005, 70,
3271-3274 and references therein.
(4) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis
1980, 8, 627-630.
(5) (a) Srinvasan, N. S.; Lee, D. G. J. Org. Chem. 1979, 44, 1574. (b)
Lee, D. G.; Chang, V. S.; Chandler, W. D. J. Org. Chem. 1985, 50, 4306.
(6) (a) Wolfe, S.; Pilgrim, W. R.; Garrad, T. F.; Chamberlain, P. Can. J.
Chem. 1971, 49, 1099-1015. (b) Yusubov, M. S.; Filimonov, V. D.;
Vasilyeva, V. P.; Chi, K. W. Synthesis 1995, 1234-1236.
(7) (a) Zhu, Z. L.; Espenson, J. H. J. Org. Chem. 1995, 60, 7728-7732.
(b) Yusubov, M. S.; Zholobova, G. A.; Vasilevsky, S. F.; Tretyakov, E.
V.; Knight, D. W. Tetrahedron 2002, 58, 1607-1610 and references therein.
(8) Favino, T. F.; Fronza, G.; Fuganti, C.; Fuganti, D.; Grasselli, P.; Mele,
A. J. Org. Chem. 1996, 61, 8975-8979.
(9) (a) Kozhevnikov, I. V. Chem. ReV. 1998, 98, 171. (b) Tsuchimoto,
T.; Joya, T.; Shirakawa, E.; Kawakami, Y. Synlett 2000, 12, 1777-1778.
(10) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem.,
Int. Ed. 2002, 41, 4563-4565 and references therein.
(11) (a) Menashe, N.; Shvo, Y. J. Org. Chem. 1991, 56, 2912-2914.
(b) Menashe, N.; Shvo, Y. J. Org. Chem. 1993, 58, 7434-7439.
(12) (a) Rabjohn, N. Org. React. 1949, 5, 331. (b) Rabjohn, N. Org.
React. 1976, 24, 261. (c) Wentzel, B. B.; Donners, M. P. J.; Alsters, P. L.;
Feiters, M. C.; Nolte, R. J. M. Tetrahedron 2000, 56, 7797-7803. (d)
Tatsugi, J.; Izawa, Y. J. Chem. Res., Miniprint 1988, 11, 2747-2763. (e)
Bonadies, F.; Bonini, C. Synth. Commun. 1988, 18, 1573-1580.
(13) Kornblum, N.; Powers, J. W.; Anderson, G. J.; Jones, W. J.; Larson,
H. O.; Levand, O.; Weaver, W. M. J. Am. Chem. Soc. 1957, 79, 6562.
(14) Floyd, M. B.; Du, M. T.; Fabio, P. F.; Jacob, L. A.; Johnson, B. D.
J. Org. Chem. 1985, 50, 5022-5027.
10.1021/jo051793g CCC: $33.50 © 2006 American Chemical Society
Published on Web 12/22/2005
826
J. Org. Chem. 2006, 71, 826-828