MnO2 as the oxidant, a polymer-supported cyanoboro-
hydride as the reductant, and acetic acid as the additive.13
With homogeneous catalysts3 such as ruthenium14 or
iridium15 catalysts, yields in the monoalkylated amines are
good but the reaction has to be conducted in refluxing toluene
and the reaction times are usually long except under micro-
wave irradiation. By using these catalysts, the main draw-
backs are the temperature and the epimerization of optically
active alcohols involved in the N-alkylation of amines.14b
Very recently, N-alkylation of amines by direct nucleophilic
substitution at the sp3 carbon atom of alcohols was reported
using iron and amino acid catalysts, but again, elevated
temperature and long reaction times are necessary.16
Here, we report a one-pot oxidation/imine-iminium
formation/reduction sequence under mild conditions
(Scheme 1). This sequence allows the chemoselective
N-alkylation of amines with various nonactivated primary
and secondary alcohols and prevents epimerization of opti-
cally active substrates (amines or alcohols). Furthermore, no
transition metals are involved which is of importance when
medicinal chemists have to prepare amines for biological tests.
Among the various conditions reported for the oxidation
of alcohols, we selected the mild 2,2,6,6-tetramethyl-1-
Scheme 1. Oxidation/Imine-Iminium Formation/Reduction
piperidinyloxyl and [bis(acetoxy)-iodo]benzene (TEMPO-
BAIB) system17 which releases AcOH in the reaction
medium; the latter is known to be an efficient additive
for reductive aminations.18 First, we tested the sequence
for the N-alkylation of benzylamine 2a by octanol 1a.
Hence, 1a was oxidized by TEMPO (0.2 equiv) in the
presence of BAIB (1.15 equiv) in CH2Cl2 at rt. After 16 h,
2a (3 equiv) and the reducing agent (2 equiv) were both
introduced in the reaction mixture at rt. The results are
reported in Table 1. By using NaBH(OAc)3 and
NaBH3CN, which are commonly used for reductive ami-
nation of aldehydes, the desired N-alkylated amine 3a was
formed as well as the corresponding N,N-bis-alkylated
compound 4a (as a minor product) (Table 1, entries 1
and 2). The use of NaBH4 led to 3a almost quantitatively
with only traces of 4a (Table 1, entry 3). The use of 2 equiv
of benzylamine seems to be a good compromise to obtain
3a in both good yield (91%) and selectivity (ratio 3a/4a =
95/5) (Table 1, entry 5).
(8) (a) Kim, J. W.; Yamaguchi, K.; Mizuno, N. J. Catal. 2009, 263,
205–208. (b) Yamaguchi, K.; He, J.; Oishi, T.; Mizuno, N. Chem. Eur.
;
J. 2010, 16, 7199–7207. (c) Yamaguchi, K.; Mizuno, N. Synlett 2010,
2365–2382.
(9) For recent references with Pd, see: (a) Zhang, Y.; Qi, X.; Cui, X.;
Shi, F.; Deng, Y. Tetrahedron Lett. 2011, 52, 1334–1338. (b) Corma, A.;
ꢀ
Rodenas, T.; Sabater, M. J. Chem. Eur. J. 2010, 16, 254–260. (c) Xu,
;
C.-P.; Xiao, Z.-H.; Zhuo, B.-Q.; Wang, Y.-H.; Huang, P.-Q. Chem.
Commun. 2010, 46, 7834–7836.
(10) For recent references with Au, see: (a) He, L.; Lou, X.-B.; Ni, J.;
Table 1. N-Alkylation of Benzylamine with Octanol
Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Chem. Eur. J. 2010, 16,
;
13965–13969. (b) Ishida, T.; Kawakita, N.; Akita, T.; Haruta, M. Gold
Bulletin 2009, 42, 267–274.
(11) (a) Shimizu, K.; Nishimura, M.; Satsuma, A. ChemCatChem
2009, 1, 497–503. (b) Cui, X.; Zhang, Y.; Shi, F.; Deng, Y. Chem. Eur.
;
J. 2011, 17, 1021–1028.
ꢀ
(12) (a) Martınez, R.; Ramon, D. J.; Yus, M. Org. Biomol. Chem.
´
2009, 7, 2176–2181. (b) Gonzalez-Arellano, C.; Yoshida, K.; Luque, R.;
Gai, P. L. Green Chem. 2010, 12, 1281–1287.
(13) Blackburn, L.; Taylor, R. J. K. Org. Lett. 2001, 3, 1637–1639.
(14) For recent references with Ru, see: (a) Watson, A. J. A.;
Maxwell, A. C.; Williams, J. M. J. J. Org. Chem. 2011, 76, 2328–2331.
(b) Hamid, M. H. S. A.; Allen, C. L.; Lamb, G. W.; Maxwell, A. C.;
Maytum, H. C.; Watson, A. J. A.; Williams, J. M. J. J. Am. Chem. Soc.
2009, 131, 1766–1774. (c) Lamb, G. W.; Watson, A. J. A.; Jolley, K. E.;
Maxwell, A. C.; Williams, J. M. J. Tetrahedron Lett. 2009, 50, 3374–
BnNH2 2a
(x equiv)
yield in
entry
“Hꢀ”
3a/4a
3aa
1
2
3
4
5
NaBH(OAc)3
NaBH3CN
NaBH4
3
3
3
1
2
74/26
85/15
97/3
n.d.b
40%
69%
quant
59%
91%
€
3377. (d) Imm, S.; Bahn, S.; Neubert, L.; Neumann, H.; Beller, M.
€
Angew. Chem., Int. Ed. 2010, 49, 8126–8129. (e) Bahn, S.; Imm, S.;
Mevius, K.; Neubert, L.; Tillack, A.; Williams, J. M. J.; Beller, M.
NaBH4
€
Chem. Eur. J. 2010, 16, 3590–3593. (f) Bahn, S.; Tillack, A.; Imm, S.;
;
Mevius, K.; Michalik, D.; Hollmann, D.; Neubert, L.; Beller, M.
NaBH4
95/5
€
ChemSusChem 2009, 2, 551–557. (g) Pingen, D.; Muller, C.; Vogt, D.
Angew. Chem., Int. Ed. 2010, 49, 8130–8133.
a Yield for isolated 3a. b n.d. = not determined.
(15) For recent references with Ir, see: (a) Suzuki, T. Chem. Rev. 2011,
111, 1825–1845. (b) Saidi, O.; Blacker, A. J.; Farah, M. M.; Marsden,
S. P.; Williams, J. M. J. Chem. Commun. 2010, 46, 1541–1543. (c) Saidi,
O.; Blacker, A. J.; Lamb, G. W.; Marsden, S. P.; Taylor, J. E.; Williams,
J. M. J. Org. Process Res. Dev. 2010, 14, 1046–1049. (d) Michlik, S.;
The reaction is general and allows the monoalkylation of
a wide range of amines.19 The results obtained with various
amines and alcohols are reported in Table 2. We have to
Kempe, R. Chem. Eur. J. 2010, 16, 13193–13198. (e) Blank, B.;
;
Michlik, S.; Kempe, R. Chem. Eur. J. 2009, 15, 3790–3799. (f) Blank,
;
B.; Michlik, S.; Kempe, R. Adv. Synth. Catal. 2009, 351, 2903–2911.
(g) Kawahara, R.; Fujita, K.; Yamaguchi, R. J. Am. Chem. Soc. 2010,
132, 15108–15111. (h) Yamaguchi, R.; Mingwen, Z.; Kawagoe, S.; Asai,
C.; Fujita, K. Synthesis 2009, 1220–1223.
(18) Baxter, E. W.; Reitz, A. B. Reductive Aminations of Carbonyl
Compounds with Borohydride and Borane Reducing Agents; John Wiley &
Sons, Inc.: 2004; Vol. 59.
(16) Zhao, Y.; Foo, S. W.; Saito, S. Angew. Chem., Int. Ed. 2011, 50,
3006–3009.
(17) De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli
G. J. Org. Chem. 1997, 62, 6974–6977.
(19) For all experiments, the completion of the oxidation was
checked by TLC or GC/MS and, if necessary, additional BAIB (up to
0.75 equiv) was introduced. The amount of BAIB necessary for the
oxidation may be related to its quality.
Org. Lett., Vol. 13, No. 13, 2011
3535