10.1002/chem.201904502
Chemistry - A European Journal
COMMUNICATION
Forschungsgemeinschaft for financial support of our research
and Jessica Reimer for experimental assistance.
Keywords:
amination
•
amines
•
ethylene
•
hydroaminoalkylation • titanium
[1]
[2]
For reviews on hydroaminoalkylation reactions of alkenes, see: a) E.
Chong, P. Garcia, L. L. Schafer, Synthesis 2014, 46, 2884-2896; b) J.
Hannedouche, E. Schulz, Organometallics 2018, 37, 4313-4326; c) P.
M. Edwards, L. L. Schafer, Chem. Commun. 2018, 54, 12543-12560.
For selected examples of late transition metal-catalyzed
hydroaminoalkylation reactions of alkenes, see: a) A. T. Tran, J.-Q. Yu,
Angew. Chem. 2017, 129, 10666-10670; Angew. Chem. Int. Ed. 2017,
56, 10530-10534; b) M. Spettel, R. Pollice, M. Schnürch, Org. Lett.
2017, 19, 4287-4290; c) S. M. Thullen, T. Rovis, J. Am. Chem. Soc.
2017, 139, 15504-15508; d) G. Lahm, T. Opatz, Org. Lett. 2014, 16,
4201-4203; e) M. Schinkel, L. Wang, K. Bielefeld, L. Ackermann, Org.
Lett. 2014, 16, 1876-1879; f) A. A. Kulago, B. F. Van Steijvoort, E. A.
Mitchell, L. Meerpoel, B. U. W. Maes, Adv. Synth. Catal. 2014, 356,
1610-1618.
Scheme 4. Insertion of ethylene into the Ti-C bond of titanaaziridines 26a-26c
and subsequent hydrolysis of titanapyrrolidine 27a to 2a.
[3]
[4]
For selected examples of group 3 metal catalyzed hydroaminoalkylation
reactions of alkenes with tertiary amines, see: a) A. E. Nako, J.
Oyamada, M. Nishiura, Z. Hou, Chem. Sci. 2016, 7, 6429-6434; b) F.
Liu, G. Luo, Z. Hou, Y. Luo, Organometallics 2017, 36, 1557-1565; c) H.
Gao, J. Su, P. Xu, X. Xu, Org. Chem. Front. 2018, 5, 59-63.
For selected examples of group 4 metal catalyzed hydroaminoalkylation
reactions of alkenes, see: a) R. Kubiak, I. Prochnow, S. Doye, Angew.
Chem. 2009, 121, 1173-1176; Angew. Chem. Int. Ed. 2009, 48, 1153-
1156; b) R. Kubiak, I. Prochnow, S. Doye, Angew. Chem. 2010, 122,
2683-2686; Angew. Chem. Int. Ed. 2010, 49, 2626-2629; c) I.
Prochnow, P. Zark, T. Müller, S. Doye, Angew. Chem. 2011, 123, 6525-
6529; Angew. Chem. Int. Ed. 2011, 50, 6401-6405; d) J. Dörfler, T.
Preuß, A. Schischko, M. Schmidtmann, S. Doye, Angew. Chem. 2014,
126, 8052-8056; Angew. Chem. Int. Ed. 2014, 53, 7918-7922; e) J.
Dörfler, T. Preuß, C. Brahms, D. Scheuer, S. Doye, Dalton Trans. 2015,
44, 12149-12168; f) L. H. Lühning, C. Brahms, J. P. Nimoth, M.
Schmidtmann, S. Doye, Z. Anorg. Allg. Chem. 2015, 641, 2071-2082;
g) J. Bielefeld, S. Doye, Angew. Chem. 2017, 129, 15352-15355;
Angew. Chem. Int. Ed. 2017, 56, 15155-15158.
Figure 2. Molecular structure of 27b. Hydrogen atoms are omitted for clarity
except H6 and H21. Thermal ellipsoids are drawn at the 50% probability level.
Selected bond lenghts (Å) and angles (°): Ti1–N1 2.068(2), N1–C33 1.472(3),
C33–C32 1.515(4), C32–C31 1.523(3), C31–Ti1 2.192(2), C1–C6 1.516(3),
C16–C21 1.513(3), N1–Ti1–C31 82.29(9), Ct1–Ti1–Ct2 131.28 Definitions:
Ct1, centroid C1-C5; Ct2, centroid C16-C20.
[5]
For selected examples of group 5 metal catalyzed hydroaminoalkylation
reactions of alkenes, see: a) S. B. Herzon, J. F. Hartwig, J. Am. Chem.
Soc. 2007, 129, 6690-6691; b) A. L. Reznichenko, T. J. Emge, S.
Audörsch, E. G. Klauber, K. C. Hultzsch, B. Schmidt, Organometallics
2011, 30, 921-924; c) A. L. Reznichenko, K. C. Hultzsch, J. Am. Chem.
Soc. 2012, 134, 3300-3311; d) J. M. Lauzon, P. Eisenberger, S.-C.
Roşca, L. L. Schafer, ACS Catal. 2017, 7, 5921-5931; e) J. W. Brandt,
E. Chong, L. L. Schafer, ACS Catal. 2017, 7, 6323-6330; f) P. M.
Edwards, L. L. Schafer, Org. Lett. 2017, 19, 5720-5723; g) R. C.
DiPucchio, S.-C. Roşca, L. L. Schafer, Angew. Chem. 2018, 130, 3527-
3530; Angew. Chem. Int. Ed. 2018, 57, 3469-3472; h) R. C. DiPucchio,
S.-C. Roşca, G. Athavan, L. L. Schafer, ChemCatChem 2019, 11,
3871-3876; i) C. Braun, M. Nieger, S. Bräse, L. L. Schafer,
ChemCatChem 2019, 11, 5264-5268.
In summary, we have presented the first examples of titanium-
catalyzed hydroaminoalkylation reactions of ethylene with
secondary amines. The new reaction does not require the use of
high pressure equipment and it tolerates the presence of alkyl,
ether, thioether, fluoro, chloro, and bromo substitution in the
amine substrates. In addition, it was possible for the first time to
determine the solid state structure of a titanapyrrolidine that is
formed by insertion of an alkene into the TiC bond of a
titanaaziridine.
[6]
[7]
M. G. Clerici, F. Maspero, Synthesis 1980, 305-306.
Research and Markets, "The Ethylene Technology Report 2016", can
[8]
[9]
M. Manßen, N. Lauterbach, J. Dörfler, M. Schmidtmann, W. Saak, S.
Doye, R. Beckhaus Angew. Chem. 2015, 127, 4458-4462; Angew.
Chem. Int. Ed. 2015, 54, 4383-4387.
The initially formed hydroaminoalkylation product was converted into
the corresponding tosylamide to simplify the work up procedure and the
final chromatographic purification.
Acknowledgements
[10] K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, 4th ed., Wiley-
VCH, Weinheim, 2003, 51-52.
We thank the Research Training Group "Chemical Bond
Activation"
(GRK
2226)
funded
by
the
Deutsche
This article is protected by copyright. All rights reserved.