Brief Articles
Journal of Medicinal Chemistry, 2006, Vol. 49, No. 3 1201
(9) Jain, R. P.; Pettersson, H. I.; Zhang, J.; Aull, K. D.; Fortin, P. D.;
Huitema, C.; Eltis, L. D.; Parrish, J. C.; James, M. N.; Wishart, D.
S.; Vederas, J. C. Synthesis and evaluation of keto-glutamine
analogues as potent inhibitors of severe acute respiratory syndrome
3CLpro. J. Med. Chem. 2004, 47, 6113-6116.
(10) Hoever, G.; Baltina, L.; Michaelis, M.; Kondratenko, R.; Baltina,
L.; Tolstikov, G. A.; Doerr, H. W.; Cinatl, J. Jr. Antiviral Activity
of Glycyrrhizic Acid Derivatives against SARS-Coronavirus. J. Med.
Chem. 2005, 48, 1256-1259.
(11) (a) Yang, W.; Guastella, J.; Huang, J.-C.;Wang, Y.; Zhang, L.; Xue,
D.; Tran, M.; Woodward, R.; Kasibhatla, S.; Tseng, B.; Drewe, J.;
Cai, S. X. MX1013, a dipeptide caspase inhibitor with potent in vivo
antiapoptotic activity. Br. J. Pharmacol. 2003, 140, 402-412. (b)
Wang, Y.; Huang, J.-C.; Zhou, Z.-L.; Yang, W.; Guastella, J.; Drewe,
J.; Cai, S. X. Dipeptidyl aspartyl fluoromethylketones as potent
caspase-3 inhibitors: SAR of the P2 amino acid. Bioorg. Med. Chem.
Lett. 2004, 14, 1269-1272.
(12) Gao, F.; Ou, H. Y.; Chen, L. L.; Zheng, W. X.; Zhang, C. T.
Prediction of proteinase cleavage sites in polyproteins of coronavi-
ruses and its applications in analyzing SARS-CoV genomes. FEBS
Lett. 2003, 553, 451-456.
(m, 2H), 2.17-2.09 (m, 2H), 2.00-1.88 (m, 1H), 0.99-0.92 (m,
6H). Anal. (C21H30FN3O5‚0.7H2O) C, H, N.
The following compounds were prepared from the corresponding
Z protected amino acid and 4 in two steps by a procedure similar
to that described for the preparation of compounds 5c and 6c.
4-(Z-Leu-amido)-6-fluoro-5-oxohexanoic Acid Dimethylamide
1
(6a). Colorless solid. H NMR (acetone-d6): 8.00-7.94 (m, 1H),
7.38-7.30 (m, 5H), 6.57 (m, 1H), 5.29-5.18 (m, 1H), 5.13-5.09
(m, 3H), 4.50-4.47 (m, 1H), 4.22-4.14 (m, 1H), 2.99-2.80 (m,
6H), 2.49-2.44 (m, 2H), 2.15-2.11 (m, 1H), 1.96-1.89 (m, 1H),
1.79-1.70 (m, 1H), 1.64-1.59 (m, 2H), 0.95-0.91 (m, 6H). Anal.
(C22H32FN3O5‚0.5H2O) C, H, N.
4-(Z-Ile-amido)-6-fluoro-5-oxohexanoic Acid Dimethylamide
1
(6b). Oil. H NMR (acetone-d6): 7.95-7.93 (m, 1H), 7.38-7.29
(m, 5H), 6.43 (m, 1H), 5.30-5.20 (m, 1H), 5.14-5.04 (m, 3H),
4.54-4.48 (m, 1H), 4.09-4.00 (m, 1H), 2.99-2.80 (m, 6H), 2.50-
2.46 (m, 2H), 2.16-2.11 (m, 1H), 1.97-1.88 (m, 2H), 1.61-1.52
(m, 1H), 1.30-1.17 (m, 1H), 0.96-0.86 (m, 6H). Anal. (C22H32-
FN3O5) C, H, N.
(13) In anti-SARS-CoV screening studies done by the National Institute
of Allergy and Infectious Diseases (NIAID) and managed by Southern
Research Institute (SRI), compound 9 was found to be >200-fold
less active than the corresponding N,N-dimethyl-glutamine analogue
6a (personal communication from Dr. Joseph A. Maddry of SRI).
The low activity of compound 9 most probably is due to the dominant
cyclized form, which is not expected to interact effectively with the
SARS-CoV Mpro enzyme.
4-(Z-Gly-amido)-6-fluoro-5-oxohexanoic Acid Dimethylamide
(6d). Oil. 1H NMR (acetone-d6): 7.90 (bs, 1H), 7.83-7.25 (m, 5H),
6.70 (bs, 1H), 5.40-5.20 (m, 1H), 5.13-5.04 (m, 3H), 4.55 (bs,
1H), 3.83 (d, J ) 6.3, 2H), 2.98-2.85 (m, 6H), 2.45 (m, 2H), 2.16-
2.07 (m, 1H), 1.98-1.85 (m, 1H). Anal. (C18H24FN3O5‚0.8H2O)
C, H, N.
(14) Kong, J. S.; Venkatraman, S.; Furness, K.; Nimkar, S.; Shepherd, T.
A.; Wang, Q. M.; Aube, J.; Hanzlik, R. P. Synthesis and evaluation
of peptidyl Michael acceptors that inactivate human rhinovirus 3C
protease and inhibit virus replication. J. Med. Chem. 1998, 41, 2579-
2587.
(15) Morris, T. S.; Frormann, S.; Shechosky, S.; Lowe, C.; Lall, M. S.;
Gauss-Muller, V.; Purcell, R. H.; Emerson, S. U.; Vederas, J. C.;
Malcolm, B. A. In vitro and ex vivo inhibition of hepatitis A virus
3C proteinase by a peptidyl monofluoromethyl ketone. Bioorg. Med.
Chem. 1997, 5, 797-807.
(16) In anti-SARS-CoV studies done by Southern Research Institute (SRI),
compound 8 was found to have an EC50 value of 1.2 µM against the
cytopathic effect (personal communication from Dr. Joseph A.
Maddry of SRI). Therefore there might be advantage of N-methyl-
glutamine over N,N-dimethyl-glutamine due to potential hydrogen
bonding of the NH group with the SARS-CoV Mpro enzyme.
(17) Malcolm, B, A.; Lowe, C.; Shechosky, S.; McKay, R. T.; Yang, C.
C.; Shah, V. J.; Simon, R. J.; Vederas, J. C.; Santi, D. V. Peptide
aldehyde inhibitors of hepatitis A virus 3C proteinase. Biochemistry
1995, 34, 8172-8179.
(18) Matthews, D. A.; Dragovich, P. S.; Webber, S. E.; Fuhrman, S. A.;
Patick, A. K.; Zalman, L. S.; Hendrickson, T. F.; Love, R. A.; Prins,
T. J.; Marakovits, J. T.; Zhou, R.; Tikhe, J.; Ford, C. E.; Meador, J.
W.; Ferre, R. A.; Brown, E. L.; Binford, S. L.; Brothers, M. A.;
DeLisle, D. M.; Worland, S. T. Structure-assisted design of mech-
anism-based irreversible inhibitors of human rhinovirus 3C protease
with potent antiviral activity against multiple rhinovirus serotypes.
Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11000-11007.
4-(Z-Ala-amido)-6-fluoro-5-oxohexanoic Acid Dimethylamide
(6e). Oil. H NMR (CDCl3): 7.85-7.78 (m, 1H), 7.30-7.20 (m,
5H), 5.40 (m, 1H), 5.15 (m, 3H), 4.98 (bs, 1H), 4.65 (bs, 1H),
4.25 (m, 1H), 2.98 (s, 3H), 2.95 (s, 3H), 2.60-2.25 (m, 2H), 2.25-
2.00 (m, 2H), 1.40 (m, 3H). Anal. (C19H26FN3O5‚H2O) C, H, N.
1
Acknowledgment. We would like to thank National Institute
of Allergy and Infectious Diseases, Dr. Joseph A. Maddry of
Southern Research Institute, and Professors Dale L. Barnard
and Robert W. Sidwell of Utah State University (NIAID
Contract NO1-AI-30048) for the initial testing of our SARS-
CoV inhibitors in a cell based screening assay. The authors also
thank Gabriele Bauer for technical assistance.
Supporting Information Available: Antiviral assay, animal
studies, and table of elemental analysis data for the targeted
compounds 6a-6e. This material is available free of charge via
References
(1) Peiris, J. S.; Guan, Y.; Yuen, K. Y. Severe acute respiratory syndrome.
Nat. Med. 2004, 10, S88-97.
(2) Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J. R.; Hilgenfeld,
R. Coronavirus main proteinase (3CLpro) structure: basis for design
of anti-SARS drugs. Science 2003, 300, 1763-1767.
(3) Hegyi, A.; Ziebuhr, J. Conservation of substrate specificities among
coronavirus main proteases. J. Gen. Virol. 2002, 83, 595-599.
(4) Yang, Z. Y.; Werner, H. C.; Kong, W. P.; Leung, K.; Traggiai, E.;
Lanzavecchia, A.; Nabel, G. J. Evasion of antibody neutralization in
emerging severe acute respiratory syndrome coronaviruses. Proc.
Natl. Acad. Sci. U.S.A. 2005, 102, 797-801.
(5) Shie, J. J.; Fang, J. M.; Kuo, C. J.; Kuo, T. H.; Liang, P. H.; Huang,
H. J.; Yang, W. B.; Lin, C. H.; Chen, J. L.; Wu, Y. T.; Wong, C. H.
J. Med. Chem. 2005, 48, 4469-4473.
(6) Wu, C. Y.; Jan, J. T.; Ma, S. H.; Kuo, C. J.; Juan, H. F.; Cheng, Y.
S.; Hsu, H. H.; Huang, H. C.; Wu, D.; Brik, A.; Liang, F. S.; Liu, R.
S.; Fang, J. M.; Chen, S. T.; Liang, P. H.; Wong, C. H. Small
molecules targeting severe acute respiratory syndrome human coro-
navirus. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 10012-11017.
(7) Kao, R. Y.; Tsui, W. H.; Lee, T. S.; Tanner, J. A.; Watt, R. M.;
Huang, J. D.; Hu, L.; Chen, G.; Chen, Z.; Zhang, L.; He, T.; Chan,
K. H.; Tse, H.; To, A. P.; Ng, L. W.; Wong, B. C.; Tsoi, H. W.;
Yang, D.; Ho, D. D.; Yuen, K. Y. Identification of novel small-
molecule inhibitors of severe acute respiratory syndrome-associated
coronavirus by chemical genetics. Chem. Biol. 2004, 11, 1293-1299.
(8) Blanchard, J. E.; Elowe, N. H.; Huitema, C.; Fortin, P. D.; Cechetto,
J. D.; Eltis, L. D.; Brown, E. D. High-throughput screening identifies
inhibitors of the SARS coronavirus main proteinase. Chem. Biol.
2004, 11, 1445-1453.
(19) In antiviral studies done by Utah State University, compounds 6a-
6c were tested against rhinovirus type-2 in a cell based assay and
found to be inactive (EC50 > 100 µg/mL) (personal communication
from Dr. Joseph A. Maddry of SRI).
(20) Dragovich, P. S.; Webber, S. E.; Babine, R. E.; Fuhrman, S. A.;
Patick, A. K.; Matthews, D. A.; Reich, S. H.; Marakovits, J. T.; Prins,
T. J.; Zhou, R.; Tikhe, J.; Littlefield, E. S.; Bleckman, T. M.; Wallace,
M. B.; Little, T. L.; Ford, C. E.; Meador, J. W., 3rd; Ferre, R. A.;
Brown, E. L.; Binford, S. L.; DeLisle, D. M.; Worland, S. T.
Structure-based design, synthesis, and biological evaluation of
irreversible human rhinovirus 3C protease inhibitors. 2. Peptide
structure-activity studies. J. Med. Chem. 1998, 41, 2819-2834.
(21) Binford, S. L.; Maldonado, F.; Brothers, M. A.; Weady, P. T.; Zalman,
L. S.; Meador, J. W. 3rd; Matthews, D. A.; Patick, A. K. Conservation
of amino acids in human rhinovirus 3C protease correlates with broad-
spectrum antiviral activity of rupintrivir, a novel human rhinovirus
3C protease inhibitor. Antimicrob. Agents Chemother. 2005, 49, 619-
626.
(22) Shie, J. J.; Fang, J. M.; Kuo, T. H.; Kuo, C. J.; Liang, P. H.; Huang,
H. J.; Wu, Y. T.; Jan, J. T.; Cheng, Y. S.; Wong, C. H. Inhibition of
the severe acute respiratory syndrome 3CL protease by peptidomi-
metic alpha,beta-unsaturated esters. Bioorg. Med. Chem. 2005, 13,
5240-5252.
JM0507678