Torquoselective Olefination of a-Oxy and a-Amino Ketones
FULL PAPER
aqueous NH3 and extracted with Et2O. The combined organic layer was
dried over MgSO4, filtered, and concentrated to give a residue, which
was purified by column chromatography to afford the lactam.
Am. Chem. Soc. 2002, 124, 14832–14833; d) N. Harada, A. Saito, N.
Koumura, H. Uda, B. de Lange, W. F. Jager, H. Wynberg, B. L. Fer-
inga, J. Am. Chem. Soc. 1997, 119, 7241–7248.
3,5-dimethyl-4-phenyl-1,5-dihydro-2-pyrrolone (59):[45] BF3·Et2O (0.063 mL,
[11] For recent examples of stereoselective construction of tetrasubstitut-
ed olefins via carbometalation of alkynes, see: a) K. Itami, T.
Kamei, J. Yoshida, J. Am. Chem. Soc. 2003, 125, 14670–14671; b) C.
Zhou, D. E. Emrich, R. C. Larock, Org. Lett. 2003, 5, 1579–1582;
c) N. Zhu, D. G. Hall, J. Org. Chem. 2003, 68, 6066–6069; d) P. E.
Tessier, A. J. Penwell, F. E. S. Souza, A. G. Fallis, Org. Lett. 2003, 5,
2989–2992; e) L. F. Tietze, K. Kahle, T. Raschke, Chem. Eur. J.
2002, 8, 401–407; f) J. P. Marino, H. N. Nguyen, J. Org. Chem. 2002,
67, 6291–6296; g) M. Hojo, Y. Murakami, H. Aihara, R. Sakuragi,
Y. Baba, A. Hosomi, Angew. Chem. 2001, 113, 641–643; Angew.
Chem. Int. Ed. 2001, 40, 621–623. For other approaches, see h) I.
Maciagiewicz, P. Dybowski, A. Skowronska, Tetrahedron 2003, 59,
6057–6066; i) M. Shimizu, T. Fujimoto, H. Minezaki, T. Hata, T.
Hiyama, J. Am. Chem. Soc. 2001, 123, 6947–6948; j) H. Kakiya, H.
Shinokubo, K. Oshima, Tetrahedron 2001, 57, 10063–10069; k) M.
Ide, M. Nakata, Synlett Synlett 2001, 1511–1515; l) X. Liu, M. Shimi-
zu, T. Hiyama, Angew. Chem. 2004, 116, 897–900; Angew. Chem.
Int. Ed. 2004, 43, 879–882.
[12] M. Shindo, Y. Sato, R. Koretsune, T. Yoshikawa, K. Matsumoto, K.
Itoh, K. Shishido, Chem. Pharm. Bull. 2003, 51, 477–478.
[13] a) M. Shindo, Tetrahedron Lett. 1997, 38, 4433–4436; b) M. Shindo,
Y. Sato, K. Shishido, Tetrahedron 1998, 54, 2411–2422; c) M.
Shindo, R. Koretsune, W. Yokota, K. Itoh, K. Shishido, Tetrahedron
Lett. 2001, 42, 8357–8360.
[14] For reviews, see a) M. Shindo, Synthesis 2003, 2275–2288; b) M.
Shindo, J. Syn. Org. Chem. Jpn. 2000, 58, 1155–1166; c) M. Shindo,
Yakugaku Zasshi 2000, 120, 1233–1246; d) M. Shindo, Chem. Soc.
Rev. 1998, 27, 367–374.
0.5 mmol) was added to
a solution of N-allyl lactam 60 (113 mg,
0.5 mmol) and 10% Pd/C (113 mg) in absolute EtOH(5 mL) at room
temperature, and then the mixture was refluxed. After 11 h, the reaction
mixture was filtered through Celite and concentrated. The residue was
purified by column chromatography (silica gel, hexane/AcOEt 40/60) to
afford g-lactam 59 (80.1 mg, 86%) as
a
yellow powder: 1HNMR
(400 MHz, CDCl3): d =1.21 (d, J=6.4 Hz, 3H), 2.02 (d, J=1.6 Hz, 3H),
4.59 (q, J=7.2 Hz, 1H), 7.33 (dd, J=1.2 Hz, 7.2 Hz, 2H), 7.39 (t, J=
7.6 Hz, 1H), 7.46 ppm (t, J=7.2 Hz, 2H); 13C NMR (100 MHz, CDCl3):
d=9.8 (q), 19.0 (q), 54.3 (d), 127.9 (d), 128.4 (d), 128.5 (d), 128.5 (s),
133.0 (s), 155.1 (s), 174.6 ppm (s); IR (neat): n˜ =3232, 1682 cmꢀ1; MS
(EI): m/z: 187 [M]+ (100%).
Acknowledgement
This work was supported in part by a Grant-in-Aid for Scientific Re-
search in the Priority Area (A) “Exploitation of Multi-Element Cyclic
Molecules” from the Ministry of Education, Culture, Sports, Science and
Technology, Japan, and PRESTO, JST. We thank Prof. R. L. Danheiser
(MIT) for helpful discussions. The generous allotment of computational
time from the Research Center for Computational Science, the National
Institutes of Natural Sciences, Japan, is gratefully acknowledged.
[15] a) M. Shindo, Y. Sato, K. Shishido, Tetrahedron Lett. 1998, 39, 4857–
4860; b) M. Shindo, Y. Sato, T. Yoshikawa, R. Koretsune, K. Shishi-
do, J. Org. Chem. 2004, 69, 3912–3916.
[1] S. E. Kelly in Comprehensive Organic Synthesis, Vol. 1 (Eds.: B. M.
Trost, I. Fleming, S. L. Schreiber), Pergamon, Oxford, 1991,
pp. 729–817.
[16] For pioneering work, see: a) C. J. Kowalski, K. W. Fields, J. Am.
Chem. Soc. 1982, 104, 321–323. For Lewis acid mediated olefination
with silyl ynol ethers, see: b) C. J. Kowalski, S. Sakdarat, J. Org.
Chem. 1990, 55, 1977–1979.
[2] For a representative review of Wittig olefination, see: B. E. Maryan-
off, A. B. Reitz, Chem. Rev. 1989, 89, 863–927.
[3] For a representative review of the Horner–Wadsworth–Emmons re-
action, see: W. S. Wadsworth, Org. React. 1977, 25, 73–253.
[4] For a review, see: P. R. Blakemore, J. Chem. Soc. Perkin Trans. 1
2002, 2563–2585.
[5] For reviews, see: a) D. J. Ager, Org. React. 1990, 38, 1; b) A. G. M.
Barrett, J. M. Hill, E. M. Wallace, J. A. Flygare, Synlett 1991, 764–
770; c) L. F. van Staden, D. Gravestock, D. Ager, Chem. Soc. Rev.
2002, 31, 195–200.
[6] For selected examples, see: a) F. N. Tebbe, G. W. Parshall, G. S.
Reddy, J. Am. Chem. Soc. 1978, 100, 3611–3613; b) N. A. Petasis,
E. I. Bzowej, J. Am. Chem. Soc. 1990, 112, 6392–6394. For reviews,
see c) O. G. Kulinkovich, A. de Meijere, Chem. Rev. 2000, 100,
2789–2834; d) R. C. Hartley, G. J. McKierman, J. Chem. Soc. Perkin
Trans. 1 2000, 2763–2793.
[7] For recent examples of olefination of ketones leading to tetrasubsti-
tuted olefins, see: a) S. Sano, K. Yokoyama, R. Teranishi, M. Shiro,
Y. Nagao, Tetrahedron Lett. 2002, 43, 281–284; b) S. Sano, T. Take-
hisa, S. Ogawa, K. Yokoyama, Y. Nagao, Chem. Pharm. Bull. 2002,
50, 1300–1302; c) T. Mantani, K. Shiomi, T. Konno, T. Ishihara, H.
Yamanaka, J. Org. Chem. 2001, 66, 3442–3448.
[8] For example, the Sharpless asymmetric epoxidation of trisubstituted
allylic alcohols (tetrasubstituted olefins) provides the corresponding
epoxides with high enantioselectivity. Since the products have con-
tiguous asymmetric carbon atoms, they would be useful for synthesis
of natural products: a) T. J. Erickson, J. Org. Chem. 1986, 51, 934–
935; b) J. A. Marshall, T. M Jenson, J. Org. Chem. 1984, 49, 1707–
1712.
[17] M. Shindo, Y. Sato, K. Shishido, J. Org. Chem. 2000, 65, 5443–5445.
[18] a) W. R. Dolbier, Jr., H. Koroniak, D. J. Burton, A. R. Bailey, G. S.
Shaw, S. W. Hansen, J. Am. Chem. Soc. 1984, 106, 1871; b) W.
Kirmse, N. G. Rondan, K. N. Houk, J. Am. Chem. Soc. 1984, 106,
7989–7991; c) N. G. Rondan, K. N. Houk, J. Am. Chem. Soc. 1985,
107, 2099–2111; d) E. A. Kallel, Y. Wang, D. C. Spellmeyer, K. N.
Houk, J. Am. Chem. Soc. 1990, 112, 6759–6763; e) S. Niwayama,
E. A. Kallel, C. Sheu, K. N. Houk, J. Org. Chem. 1996, 61, 2517–
2522; f) for a review, see: g) W. R. Dolbier, Jr., H. Koroniak, K. N.
Houk, C. Sheu, Acc. Chem. Res. 1996, 29, 471–477.
[19] a) H. Ikeda, T. Kato, S. Inagaki, Chem. Lett. 2001, 270–271; b) M.
Yasui, Y. Naruse, S. Inagaki, J. Org. Chem. 2004, 69. 7246–7249.
[20] M. Shindo, K. Matsumoto, S. Mori, K. Shishido, J. Am. Chem. Soc.
2002, 124, 6840–6841.
[21] S. Mori, M. Shindo, Org. Lett. 2004, 6, 3945–3949.
[22] F. Bonadies, A. Cardilli, A. Lattanzi, S. Pesci, A. Scettri, Tetrahe-
dron Lett. 1995, 36, 2839–2840.
[23] a) S. I. Pennanen, Tetrahedron Lett. 1977, 18, 2631–2632; b) S. I.
Pennanen, Tetrahedron Lett. 1980, 21, 657–658.
[24] For other olefinations of a-oxy ketones and aldehydes, see: a) M.
Koreeda, P. D. Patel, L. Brown, J. Org. Chem. 1985, 50, 5910–5912;
b) P. Garner, S. Ramakanth, J. Org. Chem. 1987, 52, 2629–2631.
c) C. Harcken, S. F. Martin, Org. Lett. 2001, 3, 3591–3593; d) K.
Ukai, D. Arioka, H. Yoshino, H. Fushimi, K. Oshima, K. Utimoto,
S. Matsubara, Synlett 2001, 513–514.
[25] In Cramꢁs chelation model, siloxy groups did not give efficient che-
lation. a) X. Chen, E. R. Hortelano, E. L. Eliel, S. V. Frye, J. Am.
Chem. Soc. 1992, 114, 1778–1784; b) S. Mori, M. Nakamura, E. Na-
kamura, N. Koga, K. Morokuma, J. Am. Chem. Soc. 1995, 117,
5055–5065; for a review, see: c) A. Mengel, O. Reiser, Chem. Rev.
1999, 99, 1191–1223.
[9] For an example, see: A. S. Levenson, V. C. Jordan, Eur. J. Cancer
1999, 35, 1628–1639.
[10] For recent examples, see: a) T. Fukaminato, T. Sakaki, T. Kawai, T.
Tamai, M. Irie, J. Am. Chem. Soc. 2004, 126, 14843–14849; b) J. F.
Valliant, P. Schaffer, K. A. Stephenson, J. F. Britten, J. Org. Chem.
2002, 67, 383–387; c) R. Rathore, M. I. Deselnicu, C. L. Burns, J.
Chem. Eur. J. 2006, 12, 524 – 536
ꢀ 2006 Wiley-VCHVerlag GmbH& Co. KGaA, Weinheim
535