LETTER
Novel Phenylnaphthyl Phosphines
117
(8) Our group has used the structurally related optically active
8,8¢-disubstituted 1,1¢-binaphthyls as chiral modifiers. For
examples, see: (a) Fuji, K.; Ohnishi, H.; Moriyama, S.;
Tanaka, K.; Kawabata, T.; Tsubaki, K. Synlett 2000, 351.
(b) Tanaka, K.; Nuruzzaman, M.; Yoshida, M.; Asakawa,
N.; Yang, X.-S.; Tsubaki, K.; Fuji, K. Chem. Pharm. Bull.
1999, 47, 1053. (c) Fuji, K.; Yang, X.-S.; Ohnishi, H.; Hao,
X.-J.; Obata, Y.; Tanaka, K. Tetrahedron: Asymmetry 1999,
10, 3243. (d) Tanaka, K.; Asakawa, N.; Nuruzzaman, M.;
Fuji, K. Tetrahedron: Asymmetry 1997, 8, 3637.
(9) The ligand 6 could be purified by column chromatography
under atmospheric conditions. Spectral data of 6: 1H NMR:
d = 3.37 (s, 3 H), 6.67–6.65 (m, 1 H), 6.86 (dd, J = 0.8, 7.0
Hz, 1 H), 7.16–7.11 (m, 5 H), 7.27–7.21 (m, 9 H), 7.37–7.31
(m, 2 H), 7.74–7.44 (m, 1 H), 7.74 (dd, J = 0.8, 8.0 Hz, 1 H).
MS (FAB): m/z = 419 (M + H)+. HRMS: m/z calcd for
C29H24OP (M + H)+, 419.1564; found, 419.1531.
(10) For reviews on the Suzuki–Miyaura cross-coupling, see:
(a) Suzuki, A. J. Organomet. Chem. 1999, 576, 147.
(b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(11) Spectral data of 11: 1H NMR: d = 3.48 (s, 3 H), 6.65–6.60
(m, 1 H), 6.83–6.70 (m, 4 H), 7.30–7.00 (m, 13 H), 7.50–
7.45 (m, 1 H), 7.88 (d, J = 7.9 Hz, 2 H). MS (FAB): m/z =
419 (M + H)+. HRMS: m/z calcd for C29H24OP (M + H)+,
419.1564; found, 419.1524.
To construct indoline and quinoline derivatives, we un-
dertook the cyclization of 19 and 20. As shown in Table 3,
cyclization was successful with ligands 6 and 11.
Table 3 Cyclization of Carbamate Derivatives 19 and 20
H
Pd(OAc)2 (6.0 mol%)
Ligand (5.0 mol%)
N
n
n
Cbz
N
Cs2CO3 (1.0 equiv)
1,4-dioxane
Br
Cbz
100 °C, 3.5 h
19: n = 1
20: n = 2
21: n = 1
22: n = 2
Entry
n
Ligand
Yield (%)
1
2
3
4
1
1
2
2
6
11
6
69
51
89
79
11
In conclusion, our newly prepared phenylnaphthyl phos-
phines 6 and 11 have sufficient activity as ligands for Pd-
catalyzed intramolecular amidations. These ligands are
easy to use and stable under several conditions.
(12) (a) Yang, B. H.; Buchwald, S. L. Org. Lett. 1999, 1, 35.
(b) Wolfe, J. P.; Rennels, R. A.; Buchwald, S. L.
Tetrahedron 1996, 52, 7525.
Further tuning of the ligand structure taking advantage of
the methoxy group, as well as applications of 6 and 11 to
other transition-metal catalyzed reactions are currently
underway.
(13) Intramolecular Amidations; General Procedure
To a mixture of 6 (9.8 mg, 23 mmol) and Pd(OAc)2 (6.3 mg,
28 mmol) in 1,4-dioxane (3.0 mL) was added 12 (142 mg,
0.47 mmol) and Cs2CO3 (228 mg, 0.70 mmol) at r.t. The
reaction was stirred at 100 °C for 3.5 h, EtOAc and H2O
were added, and the resulting mixture was filtered through a
pad of Celite. The organic layer was separated, washed with
brine, dried over MgSO4, and then evaporated to give a
residue, which was purified by column chromatography
(SiO2; hexane–EtOAc, 3:2) to afford 13 (88 mg, 85%).
(14) In a previous report, the cyclization of 12 was conducted
with Pd(OAc)2 (3.3 mol%), (dl)-MOP (5.0 mol%), and
K2CO3 (1.4 equiv) in toluene at 100 °C for 36 h to give 13 in
82%; see, ref. 12a.
(15) (a) Baillie, C.; Xiao, J. Tetrahedron 2004, 60, 4159.
(b) Baillie, C.; Chen, W.; Xiao, J. Tetrahedron Lett. 2001,
42, 9085.
(16) The starting material 12 was recovered in 72% yield. No
reductive dehalogenation of 12 as a side reaction was
observed.
References and Notes
(1) For reviews on transition-metal catalyzed carbon–
heteroatom bond formations, see: (a) Prim, D.; Andrioletti,
B.; Rose-Munch, F.; Rose, E.; Couty, F. Tetrahedron 2004,
60, 3325. (b) Ley, S. V.; Thomas, A. W. Angew. Chem. Int.
Ed. 2003, 42, 5400. (c) Prim, D.; Campagne, J.-M.; Joseph,
D.; Andrioletti, B. Tetrahedron 2002, 58, 2041. (d) Muci,
A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131.
(e) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999,
576, 125. (f) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.;
Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805.
(g) Hartwig, J. F. Angew. Chem. Int. Ed. 1998, 37, 2046.
(h) Hartwig, J. F. Synlett 1997, 329.
(2) (a) He, F.; Foxman, B. M.; Snider, B. B. J. Am. Chem. Soc.
1998, 120, 6417. (b) Morita, S.; Kitano, K.; Matsubara, J.;
Ohtani, T.; Kawano, Y.; Otsubo, K.; Uchida, M.
Tetrahedron 1998, 54, 4811.
(3) (a) Beccalli, E. M.; Broggini, G.; Paladino, G.; Zoni, C.
Tetrahedron 2005, 61, 61. (b) Ferreira, I. C. F. R.; Queiroz,
M.-J. R. P.; Kirsch, G. Tetrahedron 2002, 58, 7943.
(c) López-Rodríguez, M. L.; Benhamú, B.; Ayala, D.;
Rominguera, J. L.; Murcia, M.; Ramos, J. A.; Viso, A.
Tetrahedron 2000, 56, 3245.
(4) (a) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.;
Buchwald, S. L. J. Org. Chem. 2000, 65, 1158. (b) Old, D.
W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998,
120, 9722.
(5) For a review on BINAP, see: Noyori, R.; Takaya, H. Acc.
Chem. Res. 1990, 23, 345.
(6) For a review on MOP, see: Hayashi, T. Acc. Chem. Res.
2000, 33, 354.
(7) Yoshikawa, S.; Odaira, J.; Kitamura, Y.; Bedekar, A. V.;
Furuta, T.; Tanaka, K. Tetrahedron 2004, 60, 2225.
(17) Both h1- and h2-coordinations of arenes to Pd(0) were
previously proposed as plausible explanations for the
excellent properties of electron-rich biaryl phosphines:
(a) For h1-coordination, see: Reid, S. M.; Boyle, R. C.;
Mague, J. T.; Fink, M. J. J. Am. Chem. Soc. 2003, 125,
7816. (b) For h2-coordination, see: Yin, J.; Rainka, M. P.;
Zhang, X.-X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124,
1162.
(18) Attempts to synthesize the eight-, nine-, and ten-membered
lactams using 23, 24, and 25 as the starting materials,
respectively, were unsuccessful (Figure 2).
In every case only the starting materials were recovered.
O
Bn
23: n = 1
24: n = 2
25: n = 3
N
n
H
Br
Figure 2 Substrates for eight- to ten-membered lactam
formation.
Synlett 2006, No. 1, 115–117 © Thieme Stuttgart · New York