LETTER
Mercuric Triflate·(TMU)2 Catalyzed Cyclization of a Propargylic Ketone
59
0.092 mmol, 0.22 equiv) were added in succession at r.t. to
a stirred suspension of mercuric oxide (red, 10 mg, 0.046
mmol, 0.11 equiv) in dry MeCN (1 mL). After 10 min, a
solution of homopropargylic alcohol 3 (132 mg, 0.41 mmol,
1 equiv) in dry CH2Cl2 (0.5 mL) was added, immediately
followed by H2O (22 mL, 1.22 mmol, 3 equiv) and the
mixture was stirred 24 h at r.t. After addition of a 1:1 mixture
of sat. aq NaHCO3 and brine (2 mL), the mixture was
extracted with EtOAc (4 × 10 mL). The combined organic
phases were washed with a 10% HCl solution (10 mL), dried
over anhyd Na2SO4 and the solvent was evaporated.
Purification by flash chromatography (elution with
cyclohexane–EtOAc, 9:1 to 6:4) afforded OTBS-protected
aldehydes (13 mg, 10%, partly separated) and unprotected
aldehydes 4 and 5 (28 mg, 33%, partly separated), as
colorless oils.
In summary, the Hg(OTf)2·TMU2 complex, which was
developed by Nishizawa’s group as a mild and efficient
catalyst for the hydration of terminal alkynes,11 exhibits a
peculiar reactivity with the terminal homopropargylic al-
cohol 3 and propargylic ketone 9 we examined. Therefore,
efforts are currently underway to ascertain whether these
reactions may have any general applicability, especially in
the vast field of furan synthesis.
Acknowledgment
D.M. thanks the Ministère de l’Education Nationale, de la Re-
cherche et de la Technologie and A.V. thanks the Région des Pays
de la Loire for financial support.
Analytical data for aldehyde 4 (ca. 1:2 Z:E mixture):
Rf = 0.40 (eluent: cyclohexane–EtOAc, 6:4). IR (film):
3407, 2953, 2922, 2858, 1667,1458, 1364, 1190, 1117,
1048, 909, 877, 834 cm–1. 1H NMR (400 MHz, CDCl3):
d = 1.00 and 1.03 [2 s, 6 H, (Me)2-C, 1:3], 1.02 and 1.05 [2
s, 6 H, (Me)2-C, 2:3], 1.26 (br s, 1 H, OH), 1.35 (m, 1 H),
1.78 (m, 2 H), 1.91 (br s, 3 H, Me-C=, 1:3), 2.11 (br s, 3 H,
Me-C=, 2:3), 2.19 (m, 1 H), 2.82 (br s, 2 H, CH2CH=, 2:3),
3.21 (br s, 2 H, CH2CH=, 1:3), 3.98 (m, 1 H, CHOH), 5.26
(br s, 1 H, CH2CH=), 5.88 (d, J = 8.1 Hz, 1 H, CH-CHO,
2:3), 5.99 (d, J = 8.1 Hz, 1 H, CHCHO, 1:3), 9.95 (d, J = 8.1
References and Notes
(1) Roussakis, C.; Bergé, J. P.; Baud, J. P.; Chevolot, L.;
Durand, P. WO 0044718 A1, 20000803, 2000; Chem. Abstr.
2000, 133, 134246.
(2) Bergé, J. P.; Bourgougnon, N.; Carbonnelle, D.; Le Bert, V.;
Tomasoni, C.; Durand, P.; Roussakis, C. Anticancer Res.
1997, 17, 2115.
(3) The preparation of aldehyde 2 from cyclohexane-1,4-diol
will be reported in a forthcoming full paper.
Hz, 1 H, CHO, 1:3), 9.99 (d, J = 8.1 Hz, 1 H, CHO, 2:3). 13
NMR (100 MHz, CDCl3): d = 17.2 (q), 24.8 (q), 29.5 (q),
C
(4) (a) Nagpal, A.; Unny, R.; Joshi, Y. C. Heterocycl. Commun.
2001, 32, 589. (b) Simoni, D.; Invidiata, F. P.; Rondanin, R.;
Grimaudo, S.; Cannizzo, G.; Barbusca, E.; Porretto, F.;
D’Alessandro, N.; Tolomeo, M. J. Med. Chem. 1999, 42,
4961. (c) Alekseev, V. V.; Zelinin, K. N.; Yakimovich, S. I.
Russ. J. Org. Chem. 1995, 31, 705. (d) Ellis, G. P. The
Chemistry of Heterocyclic Compounds, In Chromanones
and Chromones, Vol. 33; Ellis, G. P., Ed.; J. Wiley and Sons:
USA, 1977, 495. (e) Raston, C. L.; Salem, G. J. Chem. Soc.,
Chem. Commun. 1984, 1702. (f) Buchanan, J. G.; Sable, H.
Z. In Selective Organic Transformations, Vol. 2;
Thyagarajan, B. S., Ed.; Wiley-Interscience: New York,
1972, 1.
(5) Garnovskii, A. D.; Kharixov, B. I.; Blanco, L. M.;
Garnovskii, D. A.; Burlov, A. S.; Vasilchenko, I. S.;
Bondarenko, G. I. J. Coord. Chem. 1999, 46, 365.
(6) (a) Beck, A. K.; Hoekstra, M. S.; Seebach, D. Tetrahedron
Lett. 1977, 18, 1187. (b) Tang, Q.; Sen, S. E. Tetrahedron
Lett. 1998, 39, 2249. (c) Katritzky, A. R.; Pastor, A. J. Org.
Chem. 2000, 65, 3679. (d) Le Roux, C.; Mandrou, S.;
Dubac, J. J. Org. Chem. 1996, 61, 3885; and references cited
therein. For recent references, see: (e) Wiles, C.; Watts, P.;
Haswell, S. J.; Pombo-Villar, E. Tetrahedron Lett. 2002, 43,
2945. (f) Kel’in, A. V. Curr. Org. Chem. 2003, 7, 1.
(7) Ballini, R.; Bartoli, G. Synthesis 1993, 965.
(8) Fargeas, V.; Baalouch, M.; Metay, E.; Baffreau, J.; Ménard,
D.; Gosselin, P.; Bergé, J.-P.; Barthomeuf, C.; Lebreton, J.
Tetrahedron 2004, 60, 10359.
29.6 (q), 29.8 (q), 31.27 (q), 31.31 (q), 34.4 (s), 34.5 (s), 37.7
(t), 37.9 (t), 40.2 (t), 46.0 (t), 48.6 (t), 65.99 (d), 66.03 (d),
128.2 (s), 128.6 (d), 128.7 (s), 129.8 (d), 135.2 (d), 136.1 (d),
161.5, 161.8 (s), 190.9 (d), 191.4 (d). GCMS (EI, 70 eV,
minor diastereomer): m/z (%) = 208 (5), 190 (38), 175 (79),
157 (64), 137 (84), 119 (56), 105 (80), 91 (85), 77 (55), 43
(50), 41 (90), 39 (100). GCMS (EI, 70 eV, major
diastereomer): m/z (%) = 208 (2), 175 (36), 157 (37), 147
(69), 119 (45), 107(100), 105(68), 91 (46), 79 (33), 55 (49),
41 (64), 39 (68). GCMS (CI+, i-C4H10, both diastereomers):
m/z = 209 [MH+], 191, 173, 163, 147, 109, 95, 69. HRMS
(EI): m/z calcd for C13H20O2: 208.1463; found: 208.1454.
Analytical data for OTBS-protected aldehyde 5: Rf = 0.52
(eluent: PE–Et2O, 9:1). IR (film): 2955, 2928, 2857, 1727,
1643, 1471, 1381, 1360, 1256, 1080, 836, 775, 666 cm–1. 1H
NMR (400 MHz, CDCl3): d = 0.06 [s, 6 H (Me)2-Si], 0.88 (s,
9 H, t-Bu-Si), 0.97 and 0.99 [2 s, 2 × 3H, (Me)2-C], 1.34 and
1.62 [2 m, 2 H, CH2-C(Me)2], 1.79 and 2.04 (2 m, 2 H,
CH2C=CH2), 2.68 (br s, 2 H, CH2CH=C), 3.01 (br s, 2 H,
CH2CH=O), 3.90 (dddd, J = 11.3, 9.1, 5.5, 3.6 Hz, 1 H,
CHOSi), 4.95 (br s, 1 H, CH2=C), 5.06 (br s, 1 H, =CHCH2),
5.15 (br s, 1 H, CH2=C), 9.59 (t, J = 2.5 Hz, 1 H, CHO). 13
NMR (100 MHz, CDCl3): d = –4.6 (q), 18.2 (s), 26.0 (q),
C
29.5 (q), 31.2 (q), 34.2 (s), 38.0 (t), 45.5 (t), 46.4 (t), 49.9 (t),
66.8 (d), 116.6 (t), 129.4 (s), 134.9 (d), 138.7 (s), 199.9 (d).
HRMS (ESI): m/z calcd for C19H34O2NaSi: 345.2226.
Found: 345.2221.
(9) Sondheimer, F.; Amiel, Y.; Gaoni, Y. J. Am. Chem. Soc.
1961, 84, 270.
(10) Stacy, G. W.; Mikulec, R. A. Org. Synth., Coll. Vol. IV 1963,
13.
(11) Nishizawa, M.; Skwarczynski, M.; Imagawa, H.; Sugihara,
T. Chem. Lett. 2002, 12.
(12) The red form of mercuric oxide was used although
Nishizawa et al. (see ref. 11) described the reaction with the
yellow form.
(14) Larock, R. C.; Harrison, L. W. J. Am. Chem. Soc. 1984, 106,
4218.
(15) Depending on reaction time, small amounts of TBS-
protected alcohols 4 and 5 were also isolated.
(16) Sniady, A.; Wheeler, K. A.; Dembinski, R. Org. Lett. 2005,
7, 1769.
(17) Hashmi, A. S. K.; Bats, J. W.; Choi, J.-H.; Schwarz, L.
Tetrahedron Lett. 1998, 39, 7491.
(18) The result is the same when the crude propargylic ketone 9
or the purified allene 10 is used for the hydration reaction.
(13) Typical Experimental Procedure for the Synthesis of
Aldehydes 4 and 5 and Furan 11.
Tf2O (8 mL, 0.046 mmol, 0.11 equiv) and TMU (11 mL,
Synlett 2006, No. 1, 57–60 © Thieme Stuttgart · New York