R. Schwesinger et al.
MgSO4, and concentrated in vacuo. The tan residue was dried in high
vacuum, was recrystallized from MeOH/H2O 7:1 (300 mL), and again
was dried in high vacuum to afford colorless crystals (18.6 g, 82%). M.p.
>2108C (decomp); 6b·HBF4 could be recovered almost quantitatively
from the mother liquor; 1H NMR (250 MHz, CDCl3, 308C, TMS): d=
1.75 (m, 48H; NCH2CH2), 3.14 ppm (m, 48H; NCH2CH2); 13C NMR
(100 MHz, CDCl3, 308C, TMS): d=26.4 (d, 3J(P,C)=9 Hz, NCH2CH2),
46.4 ppm (d, 2J(P,C)=6 Hz, NCH2CH2); 31P NMR (202 MHz, CDCl3,
308C, 85% H3PO4): d=ꢀ33.8 (quint, 2J(P,P)=51 Hz, 1P), 6.25 ppm (d,
4P); IR (KBr): n˜ =2956 (vs), 2860 (vs), 2660 (w), 2080 (w), 1480 (w),
1453 (m), 1355 (s), 1263 (vs, br), 1196 (s), 1124 (s), 1082 (vs), 1047 (vs),
1008 (vs), 909 (w), 867 (w), 803 (m), 760 (w), 721 cmꢀ1 (w); elemental
analysis calcd (%) for C48H96N16BF4P5 (1139.1): C 50.62, H 8.50, N 19.67;
found: C 50.46, H 8.53, N 19.56.
Acknowledgements
This workwas supported by the Deutsche Forschungsgemeinschaft.
[1] M. E. Halpern, Process Chemistry in the Pharmaceutical Industry
1999, pp. 283–298; M. Makosza, M. Fedorynski in Interfacial Cataly-
sis (Ed.: A. G. Volkov), Dekker, New York, Basel, 2003, pp. 159–
201; D. Albanese in Interfacial Catalysis (Ed.: A. G. Volkov),
Dekker, New York, Basel, 2003, pp. 203–226.
[2] D. Landini, A. Maia, J. Chem. Soc. Chem. Commun. 1984, 1041–
1042; D. Landini, A. Maia, A. Rampoldi, J. Org. Chem. 1986, 51,
5475–5476.
Stability test of phosphonium- and phosphazenium cations under phase-
transfer conditions: The corresponding tetrafluoroborate salt
(0.500 mmol) was dissolved in a minimum amount of MeOH, a solution
of KCl (45 mg, 0.600 mmol) in H2O (150 mL) was added with stirring, the
precipitate was filtered off, and the solution concentrated in vacuo, yield-
ing the crude chloride. Chlorobenzene (7 mL), H2O (3.5 mL), and NaOH
(3.5 g) were added and the mixture was heated to 1008C (if not otherwise
indicated) in a Teflon flaskwith stirring. Then both phases were diluted
by addition of chlorobenzene (20 mL) as well as H2O (20 mL) and sepa-
rated; the aqueous phase was extracted with chlorobenzene (230 mL)
and the combined organic phases were washed with brine (20 mL). The
combined organic phases were concentrated in vacuo, the residue was
dissolved in MeOH (25 mL), and NaBPh4 or NaBF4 (200 mg) in MeOH
(5 mL) was added. The colorless precipitates were filtered off, washed
with a small amount of MeOH, and dried in vacuo to afford the corre-
sponding salts. From the yield (assuming first-order kinetics with respect
to the cation) the half lives of the cations were calculated. In case of 4a+
the precipitate contained cation salts derived from decomposition prod-
[3] D. Landini, A. Maia, A. Rampoldi, J. Org. Chem. 1986, 51, 3187–
3191.
[4] E. V. Dehmlow, V. Knufinke, J. Chem. Res. Synop. 1989, 224–225.
[5] H. J.-M. Dou, R. Gallo, P. Hassanaly, J. Metzger, J. Org. Chem.
1977, 42, 4275–4276.
[6] I. E. Markó in Comprehensive Organic Synthesis, Vol. 3 (Eds.: B. M.
Trost, I. Fleming), Pergamon, Oxford, 1991, pp. 913–974; E. M.
Arnett, P. C. Wernett, J. Org. Chem. 1993, 58, 301–303; X.-M.
Zhang, F. G. Bordwell, M. Van Der Puy, H. E. Fried, J. Org. Chem.
1993, 58, 3060–3066; L. Vial, M.-H. GonÅalves, P.-Y. Morgantini, J.
Weber, G. Bernardinelli, J. Lacour, Synlett 2004, 1565–1568.
[7] J. G. Dawber, J. C. Tebby, A. A. C. Waite, J. Chem. Soc. Perkin
Trans. 2 1983, 1923–1925.
[8] G. W. Fenton, C. K. Ingold, J. Chem. Soc. 1929, 2342–2357.
[9] R. Schwesinger, H. Schlemper, Angew. Chem. 1987, 99, 1212–1214;
Angew. Chem. Int. Ed. Engl. 1987, 26, 1167–1169.
[10] R. Schwesinger, C. Hasenfratz, H. Schlemper, L. Walz, E.-M. Peters,
K. Peters and H. G. von Schnering, Angew. Chem. 1993, 105, 1420–
1422; Angew. Chem. Int. Ed. Engl. 1993, 32, 1361–1363.
[11] R. Schwesinger, H. Schlemper, C. Hasenfratz, J. Willaredt, T. Dam-
bacher, T. Breuer, C. Ottaway, M. Fletschinger, J. Boele, H. Fritz, D.
Putzas, H. W. Rotter, F. G. Bordwell, A. V. Satish, G.-Z. Ji, E.-M.
Peters, K. Peters, H. G. von Schnering, L. Walz, Liebigs Ann. 1996,
1055–1081.
1
ucts;[35] a H NMR analysis was performed to evaluate the amount of un-
decomposed 4a+.
1
Salt 1a·BF4: 26 mg, 88 mmol, 18% after 75 min; t = =20 min.
2
1
Salt 1b·BPh4: 243 mg, 387 mmol, 77% after 20 min; t = =54 min; m.p.
2
2138C; 1H NMR (250 MHz, CDCl3, 308C, TMS): d=1.88 (m, 16H;
NCH2CH2), 3.13 (m, 16H; NCH2CH2), 6.88 (m, 4H; p-Harom), 7.22 (m,
[12] A. P. Marchenko, G. N. Koidan, A. M. Pinchuk, Zh. Obshch. Khim.
1983, 53, 670–677; J. Gen. Chem. 1983, 53, 583–589.
8H; o-Harom), 7.45 ppm (m, 8H; m-Harom).
1
Salt 1e·BPh4: 561 mg, 603 mmol, 65% after 42.5 h; t = =67 h, m.p. 2308C;
2
[13] E. V. Dehmlow, U. Fastabend, Gazz. Chim. Ital. 1996, 126, 53–55;
T. Nobori, T. Suzuki, S. Kiyono, M. Kouno, K. Mizutani, Y. Sonobe,
U. Takaki (Mitsui Toatsu Chemicals, Inc., Japan), EP 791600 A1,
1997 [Chem. Abstr. 1997, 127, 234743]; T. Nobori, T. Hayashi, S.
Kiyono, U. Takaki (Mitsui Chemicals, Inc., Japan), EP 879838 A2,
1998 [Chem. Abstr. 1999, 130, 38836]; M. Isobe, K. Ohkubo, S.
Sakai, U. Takaki, T. Nobori, T. Izukawa, S. Yamasaki (Mitsui Toatsu
Chemicals, Inc., Japan), EP 897940 A2, 1999 [Chem. Abstr. 1999,
130, 197636]; S. Yamasaki, I. Hara, S. Tamura, F. Yamazaki, H. Wa-
tanabe, M. Matsufuji, S. Matsumoto, A. Nishikawa, T. Izukawa, M.
Aoki, T. Nobori, U. Takaki (Mitsui Chemicals, Inc., Japan), EP
916686 A1, 1999 [Chem. Abstr. 1999, 130, 52838]; P. C. Hupfield,
R. G. Taylor, J. Inorg. Organomet. Polym. 1999, 9, 17–34; P. Hup-
field, A. Surgenor, R. Taylor (Dow Corning Corporation, USA), EP
1008610 A2, 2000 [Chem. Abstr. 2000, 133, 31350]; G. Moloney, P.
Hupfield, A. Surgenor, R. Taylor (Dow Corning Corporation,
USA), EP 1008612 A2, 1999 [Chem. Abstr. 2000, 133, 31352]; M.
Isobe, K. Ohkubo, S. Sakai (Mitsui Toatsu Chemicals, Inc., Japan),
EP 1028133 A1, 2000 [Chem. Abstr. 2000, 133, 164974]; D. Baskaran,
A. H. E. Müller, Macromol. Rapid Commun. 2000, 21, 390–395; S.
Yamasaki, Y. Hara, T. Kunihiro, F. Yamazaki, M. Matsufuji, A.
Nishikawa, S. Matsumoto, T. Izukawa, M. Isobe, K. Ohkubo, K.
Ueno (Mitsui Toatsu Chemicals, Inc., Japan), EP 104100 A1, 2000
[Chem. Abstr. 2000, 132, 308867]; S. Ota, S. Moriya, R. Mori, T.
Koda, J. Tan, S. Kojoh, H. Kaneko, S. Hama, T. Nobori, T. Matsugi,
N. Kashiwa (Mitsui Chemicals, Inc., Japan), EP 1275670 A1, 2001
[Chem. Abstr. 2001, 135, 137856]; A. Grzelka, J. Chojnowski, M.
Cypryk, W. Fortuniak, P. C. Hupfield, R. G. Taylor, J. Organomet.
Chem. 2002, 660, 14–26; A. Grzelka, J. Chojnowski, W. Fortuniak,
1H NMR (250 MHz, CDCl3, 308C, TMS): d=1.00–1.95 (m, 40H; CH2),
2.50 (d, 3J(P,H)=10 Hz, 12H; CH3), 2.92 (m, 4H; CH), 6.80–7.08 (m,
12H; Harom), 7.25–7.42 ppm (m, 8H; Harom); 13C NMR (100 MHz, CDCl3,
308C, TMS): d=25.1 (s, CH2), 26.1 (s, CH2), 29.9 (d, 2J(P,C)=3.2 Hz,
2
CH), 30.5 (s, CH2), 55.8 (d, J(P,C)=4.7 Hz, CH3), 116.8, 121.8, 125.6 (2J-
(B,C)=2.6 Hz), 136.2 ppm; elemental analysis calcd (%) for C52H76N4BP
(799.0): C 78.17, H 9.59, N 7.01; found: C 78.15, H 9.61, N 7.07.
1
Salt 1 f·BPh4: 539 mg, 1327 mmol, 85% after 1.5 h; t = =6 h; m.p. 2348C
2
(decomp); 1H NMR (250 MHz, CDCl3, 308C, TMS): d=1.10 (d, 3J=
3
8 Hz, 24H; CCH3), 2.35 (d, J(P,H)=10 Hz, 12H; NCH3), 3.30 (sept, 4H;
CH), 6.90 (m, 4H; Harom), 7.05 (m, 8H; Harom), 7.42 ppm (m, 8H; Harom);
elemental analysis calcd (%) for C40H60N4BP (638.7): C 75.22, H 9.47, N
8.77; found: C 75.28, H 9.49, N 8.85.
1
Salt 2a·BF4: 130 mg, 304 mmol, 61% after 6 h; t = =8 h.
2
1
Salt 2b·BF4: 239 mg, 410 mmol, 82% after 6 h; t = =21 h.
2
1
Salt 2c·BF4: 265 mg, 265 mmol, 53% after 6 h; t = =7 h.
2
1
Salt 2d·BF4: 253 mg, 301 mmol, 60% after 6 h; t = =8 h.
2
1
Salt 4a·BPh4: 29.2 mg, 28.9 mmol, 2.2% after 184 h at 1108C; t = =33 h.
2
1
Salt 4b·BPh4: 524 mg, 460 mmol, 91% after 65 h at 1108C, t = =477 h;
2
m.p. 2488C (decomp); 1H NMR (250 MHz, CDCl3, 308C, TMS): d=1.74
(m, 48H; NCH2CH2), 3.13 (m, 48H; NCH2CH2), 6.90 (m, 4H; p-Harom),
7.07 (m, 8H; m-Harom), 7.44 ppm (m, 8H; o-Harom); for the analysis of the
decomposition products, the mother liquor was concentrated in vacuo
and the residue checked by NMR spectroscopy: 1H NMR (250 MHz,
CDCl3, 308C, TMS): d=1.75 (m, integr. 70 mm), 3.03 (m, 22 mm), 3.15
(m, 34 mm) 6.78–7.02 (m, 10.5 mm), 7.08 (m, 15 mm), 7.30–7.50 (m,
19 mm), 7.62 ppm (m, 2 mm).
436
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2006, 12, 429 – 437