A R T I C L E S
Hoeben et al.
Chart 1. (OPVn)4Porphyrins Designed to Self-Assemble into
Functional Supramolecular Architecturesa
Moreover it describes the stabilization of supramolecular
assemblies by combining π-π stacking interactions with
intermolecular hydrogen bonding (5, 6). We compare some
supramolecular interactions often used and demonstrate their
profound influence on the resulting self-assembly characteristics,
the stability of the formed architectures, and the efficiency of
the sequential energy transfer process along the stacking
direction. Comparative studies of energy and/or electron-transfer
efficiencies in synthetic covalent, multichromophoric (dendritic)
systems have often been reported in contrast to supramolecular
systems.9
In order to compare the different structures we first highlight
the previously reported results on OPV-appended porphyrins 1
and 2 (Chart 1).8,10 These systems are equipped with oligo-
(ethylene oxide) chains, thus enabling self-assembly of 1 and 2
into H-type aggregates in water. Heating these assemblies yields
a chiral-to-achiral transition, although the supramolecular
structures remain assembled at high temperatures due to their
enormous stability. The UV/vis spectra of 1 and 2 are indicative
of ground-state electronic communication between the OPVs
and the porphyrin chromophores, resulting in highly modified
absorption spectra with respect to reference OPV and porphyrin
compounds.5e,j Fluorescence spectra of 1 and 2, combined with
quenching studies, display the characteristic features of efficient
intramolecular energy transfer from the peripheral OPVs to both
respective porphyrin cores. Furthermore, mixtures containing
co-assembled 1 and 2 in water suggest cascade energy transfer
from the peripheral OPVs via Zn-porphyrin to free-base
porphyrin. However the energy transfer efficiency is rather low
(5) For examples using various chromophores, see: (a) Vollmer, M. S.;
Wu¨rthner, F.; Effenberger, F.; Emele, P.; Meyer, D. U.; Stu¨mpfig, T.; Port,
H.; Wolf, H. C. Chem.sEur. J. 1998, 4, 260-269. (b) Holten, D.; Bocian,
D. F.; Lindsey, J. S. Acc. Chem. Res. 2002, 35, 57-69. (c) Loewe, R. S.;
Tomizaki, K.; Youngblood, W. J.; Bo, Z.; Lindsey, J. S. J. Mater. Chem.
2002, 12, 3438-3451. (d) Frampton, M. J.; Magennis, S. W.; Pillow, J. N.
G.; Burn, P. L.; Samuel, I. D. W. J. Mater. Chem. 2003, 13, 235-242. (e)
Li, B.; Li, J.; Fu, Y.; Bo, Z. J. Am. Chem. Soc. 2004, 126, 3430-3431. (f)
Choi, M.-S.; Yamazaki, T.; Yamazaki, I.; Aida, T. Angew. Chem., Int. Ed.
2004, 43, 150-158. (g) Imahori, H. Org. Biomol. Chem. 2004, 2, 1425-
1433. (h) Duan, X.-F.; Wang, J.-L.; Pei, J. Org. Lett. 2005, 7, 4071-4074.
(i) Loiseau, F.; Campagna, S.; Hameurlaine, A.; Dehaen, W. J. Am. Chem.
Soc. 2005, 127, 11352-11363. (j) Jiu, T.; Li, Y.; Gan, H.; Liu, H.; Wang,
S.; Zhou, W.; Wang, C.; Li, X.; Liu, X.; Zhu, D. Tetrahedron 2007, 63,
232-240.
(6) For example, see: (a) Prokhorenko, V. I.; Holzwarth, A. R.; Mu¨ller, M.
G.; Schaffner, K.; Miyatake, T.; Tamiaki, H. J. Phys. Chem. B 2002, 106,
5761-5768. (b) van der Boom, T.; Hayes, R. T.; Zhao, Y.; Bushard, P. J.;
Weiss, E. A.; Wasielewski, M. R. J. Am. Chem. Soc. 2002, 124, 9582-
9590. (c) de la Escosura, A.; Martinez-Diaz, M. V.; Thordarson, P.; Rowan,
A. E.; Nolte, R. J. M.; Torres, T. J. Am. Chem. Soc. 2003, 125, 12300-
12308. (d) Ahrens, M. J.; Sinks, L. E.; Rybtchinski, B.; Liu, W.; Jones, B.
A.; Giaimo, J. M.; Gusev, A. V.; Goshe, A. J.; Tiede, D. M.; Wasielewski,
M. R. J. Am. Chem. Soc. 2004, 126, 8284-8294. (e) Li, X.; Sinks, L. E.;
Rybtchinski, B.; Wasielewski, M. R. J. Am. Chem. Soc. 2004, 126, 10810-
10811. (f) Wu¨rthner, F.; Chen, Z.; Hoeben, F. J. M.; Osswald, P.; You,
C.-C.; Jonkheijm, P.; van Herrikhuyzen, J.; Schenning, A. P. H. J.; van
der Schoot, P. P. A. M.; Meijer, E. W.; Beckers, E. H. A.; Meskers, S. C.
J.; Janssen, R. A. J. J. Am. Chem. Soc. 2004, 126, 10611-10618. (g)
Sugiyasu, K.; Fujita, N.; Shinkai, S. Angew. Chem., Int. Ed. 2004, 43,
1229-1233. (h) Rybtchinski, B.; Sinks, L. E.; Wasielewski, M. R. J. Am.
Chem. Soc. 2004, 126, 12268-12269.
a (Top)Hydrophilic(OPV4)4porphyrins1and2andlipophilic(OPV4)4porphyrins
3 and 4 containing all-trans vinylene linkages. (Bottom) (OPV3)4Porphyrins
5 and 6 containing amide linkages.
(compared to 5 and 6, Vide infra). This inefficiency can probably
be ascribed to the relatively poor organization of these as-
semblies (for both features, see Table 1). The latter may be due
to the presence of kinetically trapped assemblies as a result of
the stability of the supramolecular structures even at high
temperatures.
Results and Discussion
(7) For some recent reviews, see: (a) Wasielewski, M. R. J. Org. Chem. 2006,
71, 5051-5066. (b) Kobuke, Y. Eur. J. Inorg. Chem. 2006, 12, 2333-
2351. (c) Fukuzumi, S. Bull. Chem. Soc. Jpn. 2006, 79, 177-195. (d) Inoue,
H.; Funyu, S.; Shimada, Y.; Takagi, S. Pure Appl. Chem. 2005, 77, 1019-
1033. (e) Konishi, T.; Ikeda, A.; Shinkai, S. Tetrahedron 2005, 61, 4881-
4899. (f) Szacilowski, K.; Macyk, W.; Drzewiecka-Matuszek, A.; Brindell,
M.; Stochel, G. Chem. ReV. 2005, 105, 2647-2694. (f) Imahori, H. Org.
Biomol. Chem. 2004, 2, 1425-1433. (g) Choi, M.-S.; Yamazaki, T.;
Yamazaki, I.; Aida, T. Angew. Chem., Int. Ed. 2004, 43, 150-158. (h)
Kobuke, Y.; Ogawa, K. Bull. Chem. Soc. Jpn. 2003, 76, 689-708.
(8) Wolffs, M.; Hoeben, F. J. M.; Beckers, E. H. A.; Schenning, A. P. H. J.;
Meijer, E. W. J. Am. Chem. Soc. 2005, 127, 13484-13485.
Self-Assembly of Apolar Analogues 3 and 4 in MCH. Apart
from previously reported hydrophilic 1 and 2,8 their hydrophobic
analogues 3 and 4 bearing aliphatic chains have been synthesized
according to similar procedures (Chart 1).10 Compounds 3 and
4 exist as dark brownish and dark greenish solids, respectively,
which were fully characterized using 1H NMR, 13C NMR,
COSY-NMR, HMQC-NMR, and IR spectroscopy, mass spec-
trometry, and elemental analysis.
(9) Hoeben, F. J. M.; Schenning, A. P. H. J.; Meijer, E. W. ChemPhysChem
2005, 6, 2337-2342.
The optical properties of 3 and 4 were investigated in
chloroform and methylcyclohexane (MCH), aiming for self-
(10) See the Supporting Information.
9
9820 J. AM. CHEM. SOC. VOL. 129, NO. 31, 2007