C O M M U N I C A T I O N S
H-bonding with the longer template occurs to each ammonium
group from both directions (obviously not simultaneously). In other
words, the cyclopeptide is loosely held in 5Cl2 and able to access
the full length of the thread.
The ability of cation-amide interactions to disrupt internal
amide-amide H-bonding networks augurs well for their use to over-
come peptide folding and provide a thermodynamic driving force
for the formation of kinetically stable peptide and protein entangle-
ments.
Supporting Information Available: Experimental details for the
synthesis of the macrocycles, rotaxanes, threads, and precursors.
References
(1) (a) Mao, B. J. Am. Chem. Soc. 1989, 111, 6132-6136. (b) Liang, C.;
Mislow, K. J. Am. Chem. Soc. 1994, 116, 11189-11190. (c) Liang, C.;
Mislow, K. J. Am. Chem. Soc. 1995, 117, 4201-4213. (d) Taylor, W. R.
Nature 2000, 406, 916-919. (e) Rosengren, K. J.; Daly, N. L.; Plan, M.
R.; Waine, C.; Craik, D. J. J. Biol. Chem. 2003, 278, 8606-8616. (f)
Taylor, W. R.; Lin, K. Nature 2003, 421, 25.
(2) (a) Duda, R. L. Cell 1998, 94, 55-60. (b) Wikoff, W. R.; Liljas, L.;
Tsuruta, H.; Hendrix, R. W.; Johnson, J. E. Science 2000, 289, 2129-
2133.
(3) (a) Brayro, M. J.; Mukhopadhyay, J.; Swapna, G. V. T.; Huang, J. Y.;
Ma L.-C.; Sineva, E.; Dawson, P. E.; Montelione, G. T.; Ebright, R. H.
J. Am. Chem. Soc. 2003, 125, 12382-12383. (b) Rosengren, K. J.; Clark,
R. J.; Daly, N. L.; Goransson, U.; Jones, A.; Craik, D. J. J. Am. Chem.
Soc. 2003, 125, 12464-12474. (c) Wilson, K.-A.; Kalkum, M.; Ottesen,
J.; Yuzenkova, J.; Chait, B. T.; Landick, R.; Muir, T.; Severinov, K.;
Darst, S. A. J. Am. Chem. Soc. 2003, 125, 12475-12483.
(4) One reason for these architectures remaining unknown for so long is that
they are often difficult to spot in heavily folded protein structures.1d,f Also
Edman degradation does not reveal interlocked character; thus, such
compounds can easily be misassigned.
(5) (a) Blond, A.; Pe´duzzi, J.; Goulard, C.; Chiuchiolo, M. J.; Barthe´le´my,
M.; Prigent, Y.; Salomo´n, R. A.; Far´ıas, R. N.; Moreno, F.; Rebuffat, S.
Eur. J. Biochem. 1999, 259, 747-756. (b) Delgado, M. A.; Rintoul, M.
R.; Far´ıas, R. N.; Salomo´n, R. A.; J. Bacteriol. 2001, 183, 4543-4550.
(c) Yuzenkova, J.; Delgado, M.; Nechaev, S.; Savalia, D.; Epshtein, V.;
Artsimovitch, I.; Mooney, R. A.; Landick, R.; Farias, R. N.; Salomon,
R.; Severinov, K. J. Biol. Chem. 2002, 277, 50867-50875. (d) Mukho-
padhyay, J.; Sineva, E.; Knight, J.; Levy, R. M.; Elbright, R. H. Mol.
Cell 2004, 14, 739-751. (e) Bellomio, A.; Vincent, P. A.; deArcuri, B.
F.; Salomo´n, R. A.; Morero, R. D.; Far´ıas, R. N. Biochem. Biophys. Res.
Commun. 2004, 325, 1454-1458. (f) Blond, A.; Cheminant, M.;
Destoumieux-Garzon, D.; Segalas-Milazzo, I.; Pe´duzzi, J.; Goulard, C.;
Rebuffat, S. Eur. J. Biochem. 2002, 269, 6212-6222.
(6) For the synthesis of an unnatural protein catenane based on the entwined
dimeric domain of the tumor suppressor protein p53, see: Yan, L. Z.;
Dawson, P. E.; Angew. Chem., Int. Ed. 2001, 40, 3625-3627.
(7) For rotaxanes derived from short (nonfolding) peptide threads see: (a)
Leigh, D. A.; Murphy, A.; Smart, J. P.; Slawin, A. M. Z. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 728-732. (b) Wurpel, G. W. H.; Brouwer, A.
M.; van Stokkum, I. H. M.; Farran A.; Leigh, D. A. J. Am. Chem. Soc.
2001, 123, 11327-11328. (c) Asakawa, M.; Brancato, G.; Fanti, M.;
Leigh, D. A.; Shimizu, T.; Slawin, A. M. Z.; Wong, J. K. Y.; Zerbetto,
F.; Zhang, S. J. Am. Chem. Soc. 2002, 124, 2939-2950. (d) Brancato,
G.; Coutrot, F.; Leigh, D. A.; Murphy, A.; Wong, J. K. Y.; Zerbetto, F.
Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4967-4971. (e) Da Ros, T.; Guldi,
D. M.; Farran Morales, A.; Leigh, D. A.; Prato, M.; Turco, R. Org. Lett.
2003, 5, 689-691. (f) Hannam, J. S.; Kidd, T. J.; Leigh, D. A.; Wilson,
A. J. Org. Lett. 2003, 5, 1907-1910. Bottari, G.; Leigh, D. A.; Pe´rez, E.
M. J. Am. Chem. Soc. 2003, 125, 13360-13361. (g) Hannam, J. S.; Lacy,
S. M.; Leigh, D. A.; Saiz, C. G.; Slawin, A. M. Z.; Stitchell, S. G. Angew.
Chem., Int. Ed. 2004, 43, 3260-3264. (h) Leigh, D. A. et al. Angew.
Chem., Int. Ed. 2005, 44, 3062-3067.
Figure 1. 1H NMR spectra (400 MHz, CD3CN, 298 K) of (a) ethane-1,2-
diammonium thread 7Cl2; (b) [2]rotaxane 3Cl2; (c) cyclo(L-ProGly)4 (1);
(d) [2]rotaxane 5Cl2; (e) butane-1,2-diammonium thread 8Cl2. The labeling
corresponds to that shown in Scheme 1. The resonances of the all-trans
rotamer of cyclo(L-ProGly)4 are shown in light blue, and those from minor
rotamers, only present in part (c), in dark blue.
the H-bonded all-trans rotamer of free 1 are in similar proximities
to the shielding region of the adjacent proline carbonyl groups and
appear at similar chemical shifts (Figure 1c). However, in both 3Cl2
and 5Cl2 H-bonding of the glycine carbonyls to the ammonium
groups rotates the NHCO groups, causing the positions of the
geminal methylene protons relative to the adjacent proline carbonyls
to differ such that the four GlyHR1 proton resonances are shifted
downfield by 0.35 ppm, whereas the four GlyHR2 proton resonances
are shifted upfield by 0.30 ppm. Despite the loss of the internal
H-bonding network, the amide resonances still experience a slight
net upfield shift in the rotaxanes as a result of the inductive effect
from the strong interaction of glycine carbonyls with the ammonium
groups.
In the ethane-1,2-diammonium rotaxane, 3Cl2, it is clear that
one ammonium group (Hi′, Figure 1b) H-bonds principally to the
glycine carbonyls and one (Hi1 and Hi2, Figure 1b) to the proline
carbonyls. The greater shielding of the Hi′ protons (indicative of
stronger H-bonding) is, again, consistent with the previous studies12c
on cyclo(L-ProGly)4-ammonium ion host-guest complexes. The
fact that the -CH2N+- protons internal to the template (Hj) are
shielded in the rotaxane compared to the thread, while those external
to the template (Hh) are deshielded, indicates that each ammonium
group is largely H-bonded from just one direction, with the
macrocycle located over the central ethane group.
(8) Amabilino, D. B.; Stoddart, J. F. Chem. ReV. 1995, 95, 2725-2828.
(9) See, for example: (a) Kolchinski, A. G.; Busch, D. H.; Alcock, N. W. J.
Chem. Soc., Chem. Commun. 1995, 1289-1291. (b) Ashton, P. R.; Glink,
P. T.; Stoddart, J. F.; Tasker, P. A.; White, A. J. P.; Williams, D. J. Chem.
Eur. J. 1996, 2, 729-736. (c) Gong, C.; Gibson, H. W. Angew. Chem.,
Int. Ed. 1998, 37, 310-314. (d) Loeb, S. J.; Wisner, J. A. Chem. Commun.
1998, 2757-2758.
(10) (a) Mock, W. L.; Irra, T. A.; Wepsiec, J. P.; Adhia, M. J. Org. Chem.
1989, 54, 5302-5308. (b) Kim, K. Chem. Soc. ReV. 2002, 31, 96-107.
(11) (a) Deber, C. M.; Blout, E. R. Isr. J. Chem. 1974, 12, 15-29. (b) Deber,
C. M.; Blout, E. R. J. Am. Chem. Soc. 1974, 96, 7566-7568. (c) Madison,
V.; Deber, C. M.; Blout, E. R. J. Am. Chem. Soc. 1977, 99, 4788-4798.
(12) To maintain the ammonium template the “stoppering” reaction must be
carried out in the absence of base. HCl is generated during the reaction,
autocatalyzing ester formation. Since there is the potential for a mixture
of counterions in the initially formed rotaxane salts, anion exchange was
performed to ensure uniformity.
While the shifts in the -H2N+- signals in rotaxane 5Cl2 are
less informative, the internal and external -CH2N+- groups are
both split into shielded and deshielded resonances, indicating that
JA057206Q
9
J. AM. CHEM. SOC. VOL. 128, NO. 6, 2006 1785