C O M M U N I C A T I O N S
leads to stable nanometer-sized discrete particles in DMSO-water
mixtures even without any structural bias within the molecule. We
are currently exploring how the aggregation behavior of such bis-
zwitterions (e.g., dimers vs oligomers and polymers) can be
deliberately controlled by variation of the spacer between the two
zwitterionic moieties.
Acknowledgment. This work was supported by the DFG and
the Fonds der Chemischen Industrie (FCI). SANS experiments were
performed at the Institute Laue Langevin (ILL) Grenoble, France,
at beamline D11 with support by Drs. P. Lindner and R. Schweins.
Supporting Information Available: Details on the synthesis, the
NMR, DOSY, ESI-MS, DLS, and SANS experiments and the molecular
mechanics calculations.
Figure 2. Intensity weighted distribution of hydrodynamic radii resulting
from CONTIN analysis of the DLS data measured at a scattering angle of
90° (c ) 50 mM in DMSO).
References
(1) (a) Lehn, J.-M. Supramolecular Chemistry: Concepts and PerspectiVes;
VCH: Weinheim, 1995. (b) Bowden, N. B.; Weck, M.; M.; Choi, I. S.;
Whitesides, G. M. Acc. Chem. Res. 2001, 34, 231-238. (c) Lehn, J.-M.
Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4763-4768. (d) Whitesides, G.
M.; Boncheva, M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4769-4774.
(2) (a) Zimmerman, S. C.; Corbin, P. S. Struct. Bonding 2000, 96, 63-94.
(b) Lu¨ning, U.; Kuhl, C.; Uphoff, A. Eur. J. Org. Chem. 2002, 4063-
4070. (c) Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem.,
Int. Ed. 2001, 40, 2382-2426. (d) Sijbesma, R. P.; Meijer, E. W. Chem.
Commun. 2003, 5-16.
(3) Reviews on supramolecular polymers: (a) Sherrington, D. C.; Taskinen,
K. A. Chem. Soc. ReV. 2001, 30, 83-93. (b) Brunsveld, L.; Folmer, B. J.
B.; Meijer, E. W.; Sijbesma, R. P. Chem. ReV. 2001, 101, 4071-4097.
(c) Schmuck, C.; Wienand, W. Angew. Chem., Int. Ed. 2001, 40, 4363-
4369. (d) Lehn, J.-M. Polym. Int. 2002, 51, 825-839.
(4) Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg,
J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Science 1997,
278, 1601-1604.
(5) (a) Moore, J. S. Acc. Chem. Res. 1997, 30, 402-413. (b) Wuerthner, F.;
Yao, S.; Beginn, U. Angew. Chem. Int. Ed. 2003, 42, 3247-3250. (c)
Arnaud, A.; Belleney, J.; Boue´, F.; Bouteiller, L.; Carrot, G.; Wintgens,
V. Angew. Chem., Int. Ed. 2004, 43, 1718-1721.
(6) Selected references: (a) Seidel, S. R.; Stang, P. J. Acc. Chem. Res. 2002,
35, 972-983. (b) Cotton, F. A.; Lin, C.; Murillo, C. A. Acc. Chem. Res.
2001, 34, 759-771. (c) Caulder, D. L.; Raymond, K. N. Acc. Chem. Res.
1999, 32, 975-982. (d) Fujita, M. Chem. Soc. ReV. 1998, 27, 417-425.
(7) See for example: (a) Grawe, T.; Schrader, T.; Zadmard, R.; Kraft, A. J.
Org. Chem. 2002, 67, 3755-3763. (b) Corbellini, F.; Flammengo, R.;
Timmerman, P.; Crego-Calama, M.; Veslius, K.; Heck, A. J. R.; Luyten,
I.; Reinhoudt, D. N. J. Am. Chem. Soc. 2002, 124, 6569-6575. (c)
Fiammengo, R.; Timmerman, P.; de Jong, F.; Reinhoudt, D. N. Chem.
Commun. 2000, 2313-2314. (d) Hamilin, B.; Jullien, L.; Derouet, C.;
Herve´ du Penhoat, C.; Berthault, P. J. Am. Chem. Soc. 1998, 120, 8438-
8447. (e) Bok Lee, S.; Hong, J.-I. Tetrahedron Lett. 1996, 37, 8501-
8504.
Figure 3. Scattering curve (top) and Guinier plot (bottom) resulting from
the SANS experiments (c ) 45 mM in DMSO).
rH ≈ 3.0 (( 0.1) nm at c ) 50 mM in DMSO, in reasonably good
agreement with the DOSY NMR experiments.13 The size distribu-
tion as resulting from inverse Laplace transformation of the
autocorrelation function is shown in Figure 2 and is characterized
by a standard deviation of 50% (relative peak width).14 Further
information about particle size and shape of these aggregates were
obtained from SANS measurements (Figure 3).15 The linearity of
the Guinier plot is consistent with a spherical particle shape. The
radius of gyration extracted from Guinier extrapolation in the
appropriate range of the scattering curve is rG ) 2.9 (( 0.2) nm,
once more in good agreement with both the NMR and the DLS
data.16 The ratio of the average radius of gyration (from SANS)
and hydrodynamic radius (from DLS) of is rG/rH ≈ 1.0, which may
point to a “hollow sphere” type structure.17 This is in accordance
with the expected structure for dimeric 1. The “inner part” of the
dimers only consists of the flexible polyether chains and most likely
also contains a significant number of solvent molecules.
(8) (a) Schmuck, C.; Wienand, W. J. Am. Chem. Soc. 2003, 125, 452-459.
(b) Schlund, S.; Schmuck, C.; Engels B. J. Am. Chem. Soc. 2005, 127,
11115-11124.
(9) (a) ten Cate, A. T.; Kooijman, H.; Spek, A. L.; Sijbesma, R. P.; Meijer,
E. W. J. Am. Chem. Soc. 2004, 126, 3801-3808. (b) Gibson, H. W.;
Yamaguchi, N.; Jones, J. W. J. Am. Chem. Soc. 2003, 125, 3522-3533.
(10) Schmuck, C.; Bickert, V. Org. Lett. 2003, 5, 4579-4581.
(11) Connors, K. A. Binding Constants; Wiley: New York, 1987.
(12) (a) Cohen, Y.; Avram, L.; Frish, L. Angew. Chem., Int. Ed. 2005, 44,
520-554. (b) Johnson, C. S., Jr. Prog. Nucl. Magn. Reson. 1999, 34,
203-256.
(13) DLS cannot resolve monomers and dimers from small amounts of even
larger oligomers probably also present at this high concentration. They
all overlap in one averaged size distribution, giving rise to the slightly
larger rH value compared to the DOSY NMR experiments.
(14) Provencher, S. W. Comput. Phys. Commun. 1982, 27, 229-242.
(15) Lindner, P.; Zemb, T., Eds. Neutron, X-rays and Light: Scattering Methods
Applied to Soft Condensed Matter; Elsevier: New York, 2002.
(16) A closer analysis of the SANS data showed that in addition to monomers
and dimers a small amount of larger aggregates with a maximum diameter
up to 11 nm is also present in solution under these conditions.
(17) Even though for such small particles (with size distribution) this analysis
is accompanied by a relatively large error, coil-like or rodlike aggregate
shapes can clearly be excluded. However, a homogeneous sphere structure
might also be in accordance with experimental data within the experimental
error range.
In conclusion, the fully flexible bis-zwitterion 1 presented here
is, to the best of our knowledge, the first example for a homodimer-
ization solely based on a H-bond-enforced ion pair formation which
JA056465C
9
J. AM. CHEM. SOC. VOL. 128, NO. 5, 2006 1431