added. The reaction mixture is stirred overnight. 10 ml Ethylacetate is
added to dissolve the gummy product. The water layer is washed with
ethylacetate three times, combined, dried over Na2SO4 and concentrated to
gummy product which is purified by chromatography on silica gel, usually
with petrol ether : ethyl acetate (ca. 3 : 1).
formation of solid reaction products, which separate from the
aqueous solution is likely to drive peptoid product formation.{
Also, under these conditions protected aldehyde 2a can be used
directly in the Ugi-4CR. This is an important advantage, as a
selenofunctionality in an unprotected aldehyde is detrimental for
Ugi reactivity. The yields obtained with aniline as the amine in
water, varying the acid and the isonitrile components (65–87%)
were superior to the ones obtained earlier. In the case of 2,4-
dimethoxybenzyl (DMB) amine, however, no reaction could be
observed. In order to activate the intermediate imines, different
Lewis acids were tested of which Yb2(SO4)3 6 8H2O (10 mol%)
was the most suitable one for this purpose.
1 K. Schwarz and C. M. Foltz, J. Am. Chem. Soc., 1957, 79, 3292.
2 W. Brandt and L. A. Wessjohann, ChemBioChem, 2005, 6, 1; L. Flohe´,
W. A. Gunzler and H. H. Schock, FEBS Lett., 1973, 32, 132.
3 J. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman
and W. G. Hoekstra, Science, 1973, 179, 588; M. Birringer, S. Pilawa
and L. Flohe´, Nat. Prod. Rep., 2002, 19, 693 (and ref. therein);
G. C. Thomas and B. Ronald, Chem. Rev., 2003, 103, 1; G. Mugesh and
H. B. Singh, Chem. Soc. Rev., 2000, 29, 347; C. Jacob, G. I. Giles,
N. M. Giles and H. Sies, Angew. Chem., 2003, 115, 4890, Angew. Chem.,
Int. Ed., 2003, 42, 4742.
Next, the suitability of the Ugi-4CR protocol for selenocysteine
incorporation into peptides was tested, using several amino acid
residues as part of the different components of this four-
component four-centre reaction. As can be seen from the results
in Table 1 and Scheme 3, the yields of Ugi products are highly
dependent on the amine used. In the case of anilines, the yields are
satisfactory, whereas in the case of electron rich DMB-amine the
yields are quite low (7f, 7j, 7n and 7r). The reactivity of the amine
unit plays a key role in the selenocysteine analog syntheses. Amine
units from an amino acid mostly remain inactive under the
reaction conditions used and usually give Passerini products (7t).
However, the isonitrile derived from glycine ethyl ester (6b),
usually problematic because of side reactions,16 worked well in
Ugi-4CR under aqueous conditions (in Ugi products 7e and 7f).
PMP-amine (in Ugi products 7g, 7i, 7k, 7o and 7p), DMB-amine
(in Ugi products 7f, 7j, 7n and 7r), and trityl amine (in Ugi product
7s) can be used in the selenopeptoid synthesis reactions as they can
be removed under acidic (Tr)17 or oxidative conditions (PMP18
and DMB19) to give selenopeptides. Acetic acid (7a, 7b, 7d and 7o)
and N-Boc–Gly–OH (in Ugi products 7c, 7e, 7f, 7h–n, and 7q)
gave the best results. However N-Boc–(S–tBu)–Cys–OH (in Ugi
product 7g, 7r and 7s) gave moderate yields of cysteine–
selenocysteine (–Cys-Sec–) dipeptoids. Cys-Sec-derivatives (in Ugi
products 7g, 7r and 7s) can lead to the formation of a selenenyl
sulfide (–S–Se–) bridge which is a crucial intermediate in the
catalytic cycle of some selenoproteins.2,20 With a tripeptide
(N-Boc–Gly-Gly-Gly–OH) as acid building block, the tetrapeptoid
7p is obtained in reasonable yield.
4 A. Kyriakopoulos and D. Behne, Rev. Physiol. Biochem. Pharmacol.,
2002, 145, 1; D. Behne and A. Kyriakopoulos, Annu. Rev. Nutr., 2001,
21, 453.
5 I. Andreadou, W. Menge, J. Commandeur, E. Worthington and
N. Vermeulen, J. Med. Chem., 1996, 39, 2040; B. K. Sarma and
G. Mugesh, J. Am. Chem. Soc., 2005, 127, 11477.
6 Z. P. Wu and D. J. Hilvert, J. Am. Chem. Soc., 1990, 112, 5647; R. Syed,
Z. P. Wu, J. M. Hogle and D. J. Hilvert, Biochemistry, 1993, 32, 6157;
R. J. Hondal, B. L. Nilsson and R. T. Raines, J. Am. Chem. Soc., 2001,
123, 5140; M. D. Gieselman and W. A. van der Donk, Org. Lett., 2001,
3, 1331; L. Moroder, J. Pept. Sci., 2005, 11, 187.
7 S. Boschi-Muller, S. Muller, V. Dorsselaer and B. Branlant, FEBS Lett.,
1998, 439, 241; E. S. Arner, H. Sarioglu, F. Lottspeich, A. Holmgren
and A. Bo¨ck, J. Mol. Biol., 1999, 292, 1003; K. E. Sandman, J. S. Benner
and C. Noren, J. Am. Chem. Soc., 2000, 122, 960.
8 C. A. Collins, F. H. Fry, A. L. Holme, A. Yiakouvaki, A. Al-Qenaei,
C. Pourzandc and C. Jacob, Org. Biomol. Chem., 2005, 3, 1541;
S. Pariagh, K. M. Tasker, F. H. Fry, A. L. Holme, C. A. Collins,
N. Okarter, N. Gutowski and C. Jacob, Org. Biomol. Chem., 2005, 3,
975; D. Besse, F. Siedler, T. Diercks, H. Kessler and L. Moroder,
Angew. Chem., Int. Ed. Engl., 1997, 36, 883.
9 A. Schneider, O. E. D. Rodrigues, M. W. Paixa˜o, H. R. Appelt,
A. L. Braga and L. A. Wessjohann, Tetrahedron Lett., 2005/2006, DOI:
10.1016/j.tetlet.2005.11.101; A. L. Braga, D. S. Lu¨dtke, M. W. Paixa˜o,
E. E. Alberto, H. A. Stefani and L. Juliano, Eur. J. Org. Chem., 2005,
4260; E. M. Stocking, J. N. Schwarz, H. Senn, M. Salzmann and
L. A. Silks, J. Chem. Soc., Perkin Trans. 1, 1997, 2443.
10 L. A. Wessjohann and U. Sinks, J. Prakt. Chem., 1998, 340, 189;
G. Mugesh, W. W. du Mont and H. Sies, Chem. Rev., 2001, 101, 2125.
11 A. Krief, W. Dumont and C. Delmotte, Angew. Chem., 2000, 112, 1735,
Angew. Chem., Int. Ed., 2000, 39, 1669.
12 Ib. Johannsen, K. Lerstrup, L. Henriksen and K. Bechgaard, J. Chem.
Soc., Chem. Commun., 1984, 89.
13 C. J. Kowalski and J.-S. Dung, J. Am. Chem. Soc., 1980, 102, 7950.
14 B. Westermann and S. Do¨rner, Chem. Commun., 2005, 2116.
15 M. C. Pirrung and K. Das Sarma, J. Am. Chem. Soc., 2004, 126, 445.
16 R. S. Bon, C. Hong, M. J. Bouma, R. F. Schmitz, F. J. J. de Kanter,
M. Lutz, A. L. Spek and R. V. A. Orru, Org. Lett., 2003, 5, 3759.
17 G. C. Stelakatos, D. M. Theodoropoulos and L. Zervas, J. Am. Chem.
Soc., 1959, 81, 2884.
18 P. Bravo, A. Farina, V. P. Kukhar, A. L. Markovsky, S. V. Meille,
V. A. Soloshonok, A. E. Sorochinsky, F. Viani, M. Zanda and
C. Zappala´, J. Org. Chem., 1997, 62, 3424; T. Kiyoshi, S. Maki,
T. Daisuke, K. Motomu and I. Akira, Heterocycles, 1998, 47, 77.
19 S. Susumi, H. Keiko and Y. Hisashi, Tetrahedron, 2001, 57, 875.
20 L. D. Arscott, S. Gromer, R. H. Schirmer, K. Becker and C. H. Williams,
Proc. Natl. Acad. Sci. U. S. A., 1997, 94, 3621; S. Gromer, J. Wissing,
D. Behne, K. Ashman, R. H. Schirmer, L. Flohe´ and K. Becker,
J. Biochem., 1998, 332, 591; S. Gromer, L. D. Arscott, C. H. Williams,
R. H. Jr. Schirmer and K. Becker, J. Biol. Chem., 1998, 273, 20096;
S. R. Lee, S. Bar-Noy, R. L. Kwon, J. Levine, T. C. Stadtman and
S. G. Rhee, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 2521; L. Zhong,
E. S. J. Arne´r and A. Holmgren, Proc. Natl. Acad. Sci. U. S. A., 2000,
97, 5854.
In summary, we have developed a very straightforward and
short synthesis of selenocysteine and/or selenomethionine peptoids
in aqueous medium. These selenocysteine peptoids will be further
used for electrochemical and physiological studies.
We gratefully acknowledge financial support from Deutsche
Forschungsgemeinschaft as part of the Selenoprotein Schwerpunkt
DFG-SPP 1087 (We-1467/4-1), and thank Prof. Dr. B.
Westermann and Dr. W. Brandt for valuable suggestions and
discussion.
Notes and references
{ Procedure for selenopeptoid synthesis in aqueous medium: To selenylalde-
hyde 3b–c (1.3 mmol) or acetal 2a (2 mmol) in 5 ml of degassed water,
amine (1.3 mmol) is added at room temp. At this point a non-reactive acid
catalyst [e.g. Yb2(SO4)3-hydrate] can be added. The mixture is stirred for
20 min. Then 1.3 mmol of isonitrile followed by 1.0 mmol of acid are
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 541–543 | 543