SN2 Rin g Op en in g of â-La cton es: An Alter n a tive to Ca ta lytic
Asym m etr ic Con ju ga te Ad d ition s
Scott G. Nelson,* Zhonghui Wan, and Magdalena A. Stan
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
sgnelson@pitt.edu
Received J anuary 12, 2002
Merging catalytic asymmetric acyl halide-aldehyde cyclocondensation (AAC) reactions with ensuing
Grignard-mediated ring opening of the derived enantiomerically enriched â-lactones is presented
as a generally useful asymmetric synthesis of â-disubstituted carboxylic acids. Enantiomerically
enriched â-lactones are subject to efficient SN2 ring opening with a variety of copper-modified alkyl
Grignard reagents, including highly branched nucleophiles. Considerable structural variation in
the lactone electrophile is also tolerated. Phenyl- and vinyl-derived organometallics are not efficient
nucleophiles for the ring-opening reactions.
In tr od u ction
constructions. A mechanistically distinct approach to
effecting identical bond constructions emerges from an
analysis of SN2 ring opening of â-lactone electrophiles
with carbon-based nucleophiles (Figure 1). In comparison
to prototypical conjugate additions, this reaction design
reconstitutes the enone electrophile as an optically active
â-lactone with SN2 ring opening providing a surrogate
for the conjugate nucleophilic addition. This report
describes the successful implementation of this reaction
design as a versatile asymmetric synthesis of â-disbusti-
tuted carboxylates relying on catalytic asymmetric acyl
halide-aldehyde cyclocondensations as the source of the
requisite â-lactone electrophiles (eq 1). This reaction
strategy allows a variety of differentially substituted
organocuprates to be employed in the ring opening of
structurally diverse 4-substituted 2-oxetanones resulting
in a highly general synthesis of enantiomerically enriched
â-disubstituted carboxylic acids.
Conjugate nucleophilic additions to enone electrophiles
constitute fundamentally important transformations in
organic synthesis.1 The strategic nature of these bond
constructions has resulted in the development of a
number of highly successful strategies for effecting
catalytic asymmetric conjugate hydride, heteroatom, and
carbon nucleophile addition reactions.2,3 Each of these
transformations successfully achieves catalyst-based ste-
reocontrol during the conjugate addition of various nu-
cleophiles to achiral enone electrophiles. The ready
availability of the requisite achiral enone electrophiles
from the olefination of simple carbonyl starting materials
renders these transformations especially attractive bond
(1) Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771.
(2) Reviews of asymmetric conjugate additions: (a) Sibi, Mukund.
P.; Manyem, S. Tetrahedron 2000, 56, 8033. (b) Krause, N.; Hoffman-
Ro¨der, A. Synthesis 2001, 171.
(3) Selected recent examples of asymmetric conjugate additions.
Amide anions: (a) Sibi, M. P.; Asano, Y. J . Am. Chem. Soc. 2001, 123,
9708. Organoboron reagents: (b) Chong, J . M.; Shen, L. X.; Taylor, N.
J . J . Am. Chem. Soc. 2000, 122, 1822. (c) Sakuma, S.; Sakai, M.; Itooka,
R.; Miyaura, N. J . Org. Chem. 2000, 65, 5951. (d) Hayashi, T. Synlett
2001, 879 and references therein. (e) Senda, T.; Ogasawara, M.;
Hayashi, T. J . Org. Chem. 2001, 66, 6852. Enolate additions: (f)
Hanessian, S.; Pham, V. Org. Lett. 2000, 2, 2975. (g) Kim, Y. S.;
Matsunagag, S.; Das, J .; Sekine, A.; Ohshima, T.; Shibasaki, M. J . Am.
Chem. Soc. 2000, 122, 6506. (h) List, B.; Pojarliev, P.; Martin, H. J .
Org. Lett. 2001, 3, 2423. (i) Betancourt, J . M.; Barbas, C. F. Org. Lett.
2001, 3, 3737. Hydride additions: (j) Yun, J .; Buchwald, S. L. Org.
Lett. 2001, 3, 1129 and references therein. (k) Sibi, M. P.; Asano, Y.;
Sausker, J . B. Angew. Chem., Int. Ed. 2001, 40, 1293. Organozinc
reagents: (l) Bennett, S. M. W.; Brown, S. M.; Cunningham, A.; Dennis,
M. R.; Muxworthy, J . P.; Oakley, M. A.; Woodward, S. Tetrahedron
2000, 56, 2847. (m) Arnold, L. A.; Imbos, R.; Mandoli, A.; de Vries, A.
H. M.; Naasz, R.; Feringa, B. L. Tetrahedron 2000, 56, 2865 and
references therein. (n) Arena, C. G.; Calabro, G.; Francio, G.; Faraone,
F. Tetrahedron: Asymmetry 2000, 11, 2387. (o) Delapierre, G.; Con-
stantieux, T.; Brunel, J . M.; Buono, G. R. Eur. J . Org. Chem. 2000, 3,
2507. (p) Degrado, S. J .; Mizutani, H.; Hoveyda, A. H. J . Am. Chem.
Soc. 2001, 123, 755-756. (q) Hupe, E.; Knochel, P. Angew. Chem., Int.
Ed. 2001, 40, 3022. (r) Chataigner, I.; Gennari, C.; Ongeri, S.; Piarulli,
U.; Ceccarelli, S. Chem. Eur. J . 2001, 7, 2628 and references therein.
(s) Alexakis, A.; Trevitt, G. P.; Bernardinelli, G. J . Am. Chem. Soc.
2001, 123, 4358 and references therein. (t) Kobayashi, S.; Ogawa, C.;
Kawamura, M.; Sugiura, M. Synlett 2001, 983.
Resu lts a n d Discu ssion
â-Lactones offer considerable versatility as intermedi-
ates for synthesis enterprises.4 Ring opening via nucleo-
philic addition at the carbonyl residue affords access to
a variety of ester and amide aldol-type adducts depending
on the choice of nucleophile (eq 2).5 However, ring strain
within the â-lactone nucleus can elicit electrophilic
(4) Pommier, A.; Pons, J .-M. Synthesis 1993, 441.
(5) Nelson, S. G.; Wan, Z. Org. Lett. 2000, 2, 1883.
10.1021/jo025519n CCC: $22.00 © 2002 American Chemical Society
Published on Web 05/29/2002
4680
J . Org. Chem. 2002, 67, 4680-4683