336
V.T. Kasumov et al. / Spectrochimica Acta Part A 63 (2006) 330–336
substituents positions, a potential of second anodic oxidation
process is practically independent on the positions of the
methyl groups. In addition, the CV’s of L2H, L4H and L6H
unlike other ligands also exhibit redox couples at about 0 V
with Epa/Epc (V) potentials of 0.17/−0.13, 0.19/−0.12 and
0.14/−0.15 (Fig. 4a and b), respectively, which according
to [18] can be assigned to cathodic reduction of H+ evolved
in the anodic process and oxidation of adsorbed hydrogen.
The similar couples have been observed for Schiff bases
prepared from 2,6-di-tert-butylated phenols [19].
(b) V.T. Kasumov, A.A. Medjidov, R.Z. Rzaev, R.D. Kasumov, Rus.
J. Coord. Chem. 21 (1995) 209;
(c) V.T. Kasumov, F. Koksal, Trans. Met. Chem. 28 (2003) 888;
(d) T. Kasumov, F. Koksal, Spectrochim. Acta Part A 60 (2004) 31.
[5] (a) V.T. Kasumov, F. Ko¨ksal, R. Ko¨seog˘lu, J. Coord. Chem. 57
(2004) 591;
¨
(b) V.T. Kasumov, E. Tas¸, F. Ko¨ksal, S¸. Ozalp-Yaman, Polyhedron
24 (2005) 319.
[6] J.F. Larrow, E.N. Jacobsen, Y. Gao, Y. Hong, X. Nie, C.M. Zeppe,
J. Org. Chem. 59 (1994) 1939.
[7] V.T. Kasumov, F. Ko¨ksal, A. Sezer, Polyhedron, 2005, in press.
[8] (a) G.E. Batley, D.P. Graddon, Aust. J. Chem. 20 (1967) 877;
(b) S.J. Gruber, C.M. Harris, E. Sinn, J. Inorg. Nucl. Chem. 30
(1968) 1805;
(c) M. Nakamura, H. Okawa, S. Kida, Inorg. Chim. Acta 62 (1982)
201.
[9] (a) P.W. Alexander, R.J. Sleet, Aust. J. Chem. 23 (1970) 1183;
(b) G.L. Estiu, A.H. Jubert, J. Costamagna, J. Vargas, J. Mol. Struct.
(Theochem.) 367 (1996) 97.
[10] (a) A.R. Amundsen, J. Whelan, B. Bosnich, J. Am. Chem. Soc. 99
(1977) 6730;
(b) T.P. Chessman, D. Hall, T.N. Waters, J. Chem. Soc. A (1966)
694.
[11] U. Sakaguchi, A.W. Addison, J. Chem. Soc., Dalton Trans. (1979)
600.
CV of some CuLx2 was examined in DMSO over the
potential range from −1.5 to 1.5 V versus Ag/AgCl at a scan
rate of 0.1 V s−1. The CV of CuL22, CuL24 and CuL62 com-
plexes together with quasi-reversible CuII/CuIII oxidation
waves with Epa/Epc at 0.35/0.12, 0.29/0.13 and 0.53/0.12 V,
respectively, also exhibit quasi-reversible CuII/CuI reductive
waves at E1/2 = −1.06 (CuL22), −0.98 (CuL24) and −0.79 V
(CuL62). Since all complexes have almost the similar coor-
dination geometry, the observed trend can be interpreted by
the electron-donating effect of the Me groups. It is of interest
that upon repeated running at scan rate of 0.05 V s−1 of CuL26
sample, the oxidation wave at −0.58 V decreases in size
while that for corresponding cathodic wave is significantly
increased in intensity (Fig. 4e) probably indicating that the
process becomes irreversible under these conditions.
[12] (a) B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5 (1970) 1;
(b) B.A. Goodman, J.B. Raynor, Adv. Inorg. Chem. 13 (1970) 135.
[13] (a) H. Abe, K. Ono, I. Hayashi, J. Shimada, K. Iwanaga, J. Phys.
Soc. Jpn. 9 (1954) 814;
(b) F.J. Boas, R.H. Dunhill, J.R. Pilbrow, R.C. Sirvastava, T.D.
Smith, J. Chem. Soc. (A) (1969) 94;
(c) I.M. Procter, B.J. Hathaway, P. Nicholls, J. Chem. Soc. (A) (1968)
1678.
[14] (a) G.O. Garlisle, W.E. Hatfield, Inorg. Nucl. Chem. Lett. 6 (1970)
633;
Acknowledgement
We are gratefully to the Harran University Research Fund
(HUBAK, Grant No.: 275) for financial support of this
research.
(b) H. Yokoi, Chem. Lett. (1973) 1023;
(c) T.R. Felthouse, E.J. Laskowski, D.N. Hendrickson, Inorg. Chem.
16 (1977) 1077;
(d) S. Ferrier, J. Borras, C. Miratvilles, A. Fuertes, Inorg. Chem. 29
(1990) 206.
[15] (a) O. Kahn, R. Prins, J. Reedijk, J.S. Thompson, Inorg. Chem. 26
(1987) 3557;
References
(b) T. Ishida, H. Iwam, J. Am. Chem. Soc. 113 (1991) 4238.
[16] (a) B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5 (1970) 143;
(b) M.J. Bew, B.J. Hathaway, R.J. Faraday, J. Chem. Soc., Dalton
Trans. (1972) 1229.
[17] (a) J.A. Halfen, Y.G. Young, W.B. Tolmen, Angew. Chem. 108
(1996) 1832;
[1] (a) R.H. Holm, M.J. O’Conner, Prog. Inorg. Chem. 14 (1971) 241;
(b) C.G. Pierpont, C.W. Lnge, Prog. Inorg. Chem. 41 (1994) 331;
(c) N. Hoshno, Coord. Chem. Rev. 174 (1998) 77;
(d) S. Yamada Coord, Chem. Rev. 190 (1999) 537.
[2] (a) A.A. Medjidov, V.T. Kasumov, H.S. Mamedov, Koord. Khim. 7
(1981) 66;
(b) B.A. Jazdzewski, S. Mahapatra, L.M. Berreau, E.C. Wilkinson,
L. Que, W.B. Tolmen, J. Am. Chem. Soc. 119 (1997) 8217;
(c) Y. Wang, J.L. DuBois, B. Hedman, K.O. Hodgson, T.D.P. Stack,
Science 279 (1998) 537;
(d) B.A. Jazdzewski, W.B. Tolmen, Coord. Chem. Rev. 200 (2000)
633.
(b) M.K. Guseyinova, A.A. Guseyinova, V.T. Kasumov, Rus. J.
Struct. Chem. 23 (1982) 114;
(c) V.T. Kasumov, F. Ko¨ksal, Z. Anorg, Allg. Chem. 627 (2001)
2553.
[3] (a) V.T. Kasumov, F. Ko¨ksal, Spectrochm. Acta Part A 58 (2002)
2199;
(b) V.T. Kasumov, Trans. Met. Chem. 26 (2001) 64.
[4] (a) V.T. Kasumov, A.A. Medjidov, I.A. Golubeva, O.V. Shubina, R.Z.
Rzaev, Rus. J. Coord. Chem. 17 (1991) 1698;
[18] P. Gili, M.G.M. Reyes, P.M. Zarza, M.F.G. Silva, Y.-Y. Tong, A.J.L.
Pomberio, Inorg. Chim. Acta 255 (1997) 279.
[19] V.T. Kasumov, A.A. Medjidov, N. Yayli, Y. Zeren, Spectrochim. Acta
Part A 60 (2004) 3037.