T. Suzuki et al. / Tetrahedron Letters 47 (2006) 1593–1598
1597
R
H
R
H
OP
H
TESO
OP
OTES
H
OTES
TESO
OP
H
H
H
H
H
H
H
H
H
TBSO
H
TBSO
PO
H
CO2Me
MeO2C
Me
CO2Me
MeO2C
Me
H
R
H
R
R
R
3
9
OP
3
9
OP
OTBS
5
5
H
OTBS
TESO
TESO
TS-3
TS-4
disfavored
TS-1
favored
AIc, AId, EIIIc, EIIId
R
AIa, AIb, EIIIa, EIIIb
1
1
CO2Me
OTBS
CO2Me
OTBS
R
Me
Me
TESO
OP
H
H
TESO
OP
H
H
OTES
OTES
H
H
MeO2C
TBSO
H
H
H
MeO2C
TBSO
H
Ia, Ib, IIIa, IIIb
R=Me, H
Ic, Id, IIIc, IIId
R=Me, H
H
H
CO2Me
CO2Me
R
R
H
PO
H
H
OP
H
H
OTBS
H
OTBS
TS-2
disfavored
favored
BIa, BIb, FIIIIa, FIIIb
BIc, BId, FIIIc, FIIId
Figure 2.
ences cited therein; (b) Takao, K.; Munakata, R.; Tadano,
K. Chem. Rev. 2005, 105, 4779–4807.
position. Nevertheless, a careful analysis and discussion
is required to account for the observed diastereoselectiv-
ity because various factors were surmised to influence
the diastereoselectivity and the rationale as well as quan-
titative analysis for the diastereoselectivity awaits fur-
ther studies on the IMDA reactions and theoretical
calculations.
2. Suzuki, T.; Nakada, M. Tetrahedron Lett. 2002, 43, 3263–
3267. Absolute configuration shown in Scheme 1 and
Table 2 is reversed to avoid confusion. For total synthesis
and synthetic studies on FR182877, see Refs. 3–7.
3. (a) Vanderwal, C. D.; Vosburg, D. A.; Weiler, S.;
Sorensen, E. J. Org. Lett. 1999, 1, 645–648; (b) Vosburg,
D. A.; Vanderwal, C. D.; Sorensen, E. J. Org. Lett. 2001,
3, 4307–4310; (c) Vosburg, D. A.; Vanderwal, C. D.;
Sorensen, E. J. J. Am. Chem. Soc. 2002, 124, 4552–4553;
(d) Vanderwal, C. D.; Vosburg, D. A.; Weiler, S.;
Sorensen, E. J. J. Am. Chem. Soc. 2003, 125, 5359–
5373.
4. (a) Evans, D. A.; Starr, J. T. Angew. Chem., Int. Ed. 2002,
41, 1787–1790; (b) Evans, D. A.; Starr, J. T. J. J. Am.
Chem. Soc. 2003, 125, 13531–13540.
5. Methot, J. E.; Roush, W. R. Org. Lett. 2003, 43, 3263–
3267.
In conclusion, we found that the configuration of the
stereogenic C3 position bearing the protected hydroxyl
group is crucial to the diastereoselectivity in the IMDA
reaction of the terminally activated (E,E,E)-nona-1,6,8-
trienes, and also found the new successful IMDA reac-
tion of the diastereomer of 1 which produced the prod-
ucts in a ratio of 1:>10. These results would be useful for
constructing bioactive natural products containing a
bicyclo[4.3.0]non-2-ene carbon skeleton. Further studies
on the structure–diastereoselectivity relationships as
well as the studies with the aid of theoretical calculations
are in progress, and the results will be reported in due
course.
6. Armstrong, A.; Goldberg, F. W.; Sandham, D. A.
Tetrahedron Lett. 2001, 42, 4585–4587.
7. (a) Clarke, P. A.; Davie, R. L.; Peace, S. Tetrahedron Lett.
2002, 43, 2753–2756; (b) Clarke, P. A.; Grist, M.; Ebden,
M. Tetrahedron Lett. 2004, 45, 927–929; (c) Clarke, P. A.;
Davie, R. L.; Peace, S. Tetrahedron 2005, 61, 2335–2351;
(d) Clarke, P. A.; Grist, M.; Ebden, M.; Wilson, C.; Blake,
A. J. Tetrahedron 2005, 61, 353–363.
Acknowledgements
8. For the IMDA reactions in the synthesis of ikarugamycin,
see: (a) Boeckman, R. K., Jr.; Napier, J. J.; Thomas, E.
W.; Sato, R. I. J. Org. Chem. 1983, 48, 4152–4154; (b)
Paquette, L. A.; Macdonald, D.; Anderson, L. G.; Wright,
J. J. Am. Chem. Soc. 1989, 111, 8037–8039; (c) Paquette,
L. A.; Romine, J. L.; Lin, H. S.; Wright, J. J. Am. Chem.
Soc. 1990, 112, 9248–9292; (d) Paquette, L. A.; Macdo-
nald, D.; Anderson, L. G. J. Am. Chem. Soc. 1990, 112,
9292–9299; (e) Mergott, D. J.; Frank, S. A.; Roush, W. R.
Pro. Natl. Acad. Sci. U.S.A. 2004, 101, 11955–11959; In
the synthesis of spinosyn A, see: (f) Evans, D. A.; Black,
W. C. J. Am. Chem. Soc. 1993, 115, 4497–4513; In the
synthesis of (+)-cochleamycin A, see: (g) Tatsuta, K.;
Narazaki, F.; Kashiki, N.; Yamamoto, J.; Nakano, S. J.
Antibiot. 2003, 56, 584–590; In the synthesis of macquar-
imicins, see: (h) Munakata, R.; Ueki, T.; Katakai, H.;
Takao, K.-i.; Tadano, K.-i. Org. Lett. 2001, 3, 3029–3032;
(i) Chang, J.; Paquette, L. A. Org. Lett. 2002, 4, 253–256;
(j) Dineen, T. A.; Roush, W. R. Org. Lett. 2003, 5, 4725–
4728; (k) Paquette, L. A.; Chang, J.; Liu, Z. J. Org. Chem.
2004, 69, 6441–6448; (l) Munakata, R.; Katakai, H.; Ueki,
T.; Kurosaka, J.; Takao, K.-i.; Tadano, K.-i. J. Am.
Chem. Soc. 2004, 126, 11254–11267.
We thank the Material Characterization Central Labo-
ratory, Waseda University, for its technical support of
the X-ray crystallographic analysis. This work was
financially supported in part by a Waseda University
Grant for Special Research Projects, and a Grant-in-
Aid for Scientific Research (C) from the Ministry
of Education, Science, Sports, Culture and Technology,
Japan. We are also indebted to 21COE ‘Practical Nano-
Chemistry’.
Supplementary data
The structure determination of all the products based on
1
the H NMR experiments and CIF files for the X-ray
crystallographic analysis. Supplementary data associ-
ated with this article can be found, in the online version,
References and notes
9. For recently reported natural products containing a
bicyclo [4.3.0]non-2-ene carbon skeleton, FR182876, see:
Yoshimura, S.; Sato, B.; Takase, S.; Terano, H. J.
Antibiot. 2004, 57, 429–435; For hexacyclinic acid, see:
1. For reviews, see: (a) Roush, W. R. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, 1991; Vol. 5, pp 513–550, and refer-