anticipated that the erythrinane skeleton of 1 would be
obtained by cyclization of a N-acyliminium ion15 derived
from a suitable aryl enamide precursor emanating from 5.
The synthesis of imidofuran 6 began by coupling the
known mixed anhydride of 3-carbomethoxy-3-butenoic acid
(7) with the lithiated carbamate 9, derived by treating furanyl-
2-carbamic acid tert-butyl ester (8)16 with n-BuLi at 10 °C.
However, the expected imidofuran 6 was not isolated since
the subsequent intramolecular [4 + 2]-cycloaddition occurred
so rapidly that it was not possible to detect 6, even at 0 °C.
Our ability to isolate the somewhat labile (acid, heat)
oxabicyclo adduct 10 (87%) is presumably a result of the
low reaction temperatures employed as well as the presence
of the carbonyl group, which diminishes the basicity of the
nitrogen atom thereby retarding the ring cleavage/rearrange-
ment reaction generally encountered with related furanyl
carbamates.17 We suspect that the facility of the cycloaddition
is due to both the placement of the carbonyl center within
the dienophile tether18 as well as the presence of the
carbomethoxy group which lowers the LUMO energy of the
π-bond, thereby facilitating the cycloaddition.
Figure 1. Some representative Erythrina alkaloids.
report on a distinctively different strategy for the construction
of the tetracyclic core of the erythrinane ring system.
Our approach toward the synthesis of a typical Erythrina
alkaloid such as 1 derives from a program underway in our
laboratory that is designed to exploit the facile Diels-Alder
reaction of imidofurans for the purposes of natural product
synthesis.11 3-Demethoxyerythratidinone (1) was first isolated
in 1973 by Barton and his collaborators from Erythrina
lithosperma.12 Even though several syntheses have been
reported,6,13 we felt that this compound could serve to
illustrate our methodology and provide a basis for a general
cycloaddition approach toward Erythrina alkaloids. Our
retrosynthetic analysis of 1 is shown in Scheme 1 and makes
Lautens and co-workers14a,19 have recently demonstrated
that the Rh(I)-catalyzed ring-opening reaction of unsym-
metrical oxabicyclic compounds is a highly regioselective
process, giving rise to products derived from the attack of
the nucleophile distal to the bridgehead substituent. By taking
advantage of this Rh(I)-catalyzed reaction, we were able to
convert 10 into the ring-opened boronate 5 (97%), which
was then converted to the corresponding diol by treatment
with pinacol/acetic acid. Oxidation of the allylic hydroxyl
group with MnO2 followed by protection of the secondary
OH group with TBSCl, removal of the Boc group, and a
subsequent N-alkylation with 4-(2-bromoethyl)-1,2-dimethox-
ybenzene afforded enamido lactam 11 in 61% yield for the
four-step sequence (Scheme 2).
Scheme 1
Several acids were examined in our attempt to promote
the planned acid-initiated Pictet-Spengler cyclization of
lactam 11. During the course of these studies, we encountered
several novel rearrangement reactions. For example, when
11 was treated with polyphosphoric acid (PPA) in refluxing
use of an IMDAF cycloaddition of imidofuran 6 followed
by a Rh(I)-catalyzed reaction of the resulting cycloadduct
with phenyl boronic acid14 to give hexahydroindoline 5. We
(14) (a) Lautens, M.; Dockendorff, C.; Fagnou, K.; Malicki, A. Org.
Lett. 2002, 4, 1311. (b) Wang, Q.; Padwa, A. Org. Lett. 2004, 6, 2189.
(15) (a) Ito, K.; Suzuki, F.; Haruna, M. J. Chem. Soc., Chem. Commun.
1978, 733. (b) Tsuda, Y.; Hosoi, S.; Katagiri, N.; Kaneko, C.; Sano, T.
Chem. Pharm. Bull. 1993, 41, 2087. (c) Hosoi, S.; Nagao, M.; Tsuda, Y.;
Isobe, K.; Sano, T.; Ohta, T. J. Chem. Soc., Perkin Trans. 1 2000, 1505.
(d) Padwa, A.; Kappe, C. O.; Reger, T. S. J. Org. Chem. 1996, 61, 4888.
(e) Padwa, A.; Hennig, R.; Kappe, C. O.; Reger, T. S. J. Org. Chem. 1998,
63, 1144.
(16) Padwa, A.; Brodney, M. A.; Satake, K.; Straub, C. S. J. Org. Chem.
1999, 64, 4617.
(17) (a) Padwa, A.; Brodney, M. A.; Dimitroff, M. J. Org. Chem. 1998,
63, 5304. (b) Bur, S. K.; Lynch, S. M.; Padwa, A. Org. Lett. 2002, 4, 473.
(c) Ginn, J. D.; Padwa, A. Org. Lett. 2002, 4, 1515.
(18) Dramatic effects on the rate of the Diels-Alder reaction were
previously noted to occur when an amido group was used to anchor the
diene and dienophile, see: (a) Oppolzer, W.; Fro¨stl, W. HelV. Chim. Acta
1975, 58, 590. (b) White, J. D.; Demnitz, F. W. J.; Oda, H.; Hassler, C.;
Snyder, J. P. Org. Lett. 2000, 2, 3313. (c) Padwa, A.; Ginn, J. D.; Bur, S.
K.; Eidell, C. K.; Lynch, S. M. J. Org. Chem. 2002, 67, 3412. (d) Tantillo,
D. J.; Houk, K. N.; Jung, M. E. J. Org. Chem. 2001, 66, 1938.
(19) (a) Lautens, M.; Fagnou, K.; Rovis, T. J. Am. Chem. Soc. 2000, 2,
5650. (b) Lautens, M.; Fagnou, K.; Taylor, M. Org. Lett. 2000, 2, 1677.
(c) Lautens, M.; Fagnou, K. Tetrahedron 2001, 57, 5067. (d) Lautens, M.;
Chiu, P.; Ma, S.; Rovis, T. J. Am. Chem. Soc. 1995, 117, 532.
(8) (a) Ahmed-Schofield, R.; Mariano, P. S. J. Org. Chem. 1987, 52,
1478. (b) Kawasaki, T.; Onoda, N.; Watanabe, H.; Kitahara, T. Tetrahedron
Lett. 2001, 42, 8003.
(9) (a) Gervay, J. E.; McCapra, F.; Money, T.; Sharma, G. M. J. Chem.
Soc., Chem. Commun. 1966, 142. (b) Tanaka, H.; Shibata, M.; Ito, K. Chem.
Pharm. Bull. 1984, 32, 1578. (c) Chou, C.-T.; Swenton, J. S. J. Am. Chem.
Soc. 1987, 109, 6898.
(10) (a) Mondon, A.; Ehrhardt, M. Tetrahedron Lett. 1966, 2557. (b)
Haruna, M.; Ito, K. J. Chem. Soc., Chem. Commun. 1976, 345. (c) Ishibashi,
H.; Sato, K.; Ikeda, M.; Maeda, H.; Akai, S.; Tamura, Y. J. Chem. Soc.,
Perkin Trans. 1 1985, 605. (d) Westling, M.; Smith, R.; Livinghouse, T. J.
Org. Chem. 1986, 51, 1159. (e) Chikaoka, S.; Toyao, A.; Ogasawara, M.;
Tamura, O.; Ishibashi, H. J. Org. Chem. 2003, 68, 312.
(11) (a) Padwa, A.; Ginn, J. D. J. Org. Chem. 2005, 70, 5197. (b) Padwa,
A.; Bur, S. K.; Zhang, H. J. Org. Chem. 2005, 70, 6833.
(12) Barton, D. H. R.; Gunatilaka, A. A. L.; Letcher, R. M.; Lobo, A.
M. F. T.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1 1973, 874.
(13) (a) Tsuda, Y.; Sakai, Y.; Nakai, A.; Kaneko, M.; Ishiguro, Y.; Isobe,
K.; Taga, J.; Sano, T. Chem. Pharm. Bull. 1990, 38, 1462. (b) Ishibashi,
H.; Sato, T.; Takahashi, M.; Hayashi, M.; Ishikawa, K.; Ikeda, M. Chem.
Pharm. Bull. 1990, 38, 907. (c) Irie, H.; Shibata, K.; Matsuno, K.; Zhang,
Y. Heterocycles 1989, 29, 1033.
602
Org. Lett., Vol. 8, No. 4, 2006