Table 1 Physical properties of P(InCzTh2BTD)
PCE
=
3.6%, Voc
=
0.69 V, short circuit current
(Jsc) = 9.17 mA cmꢁ2, and fill factor (FF) = 0.57 have been
obtained in some preliminary devices. This result confirms our
previous finding that high crystallinity of the photoactive
material is important to achieve high device performance.12
In future work, we will focus on device optimization to further
improve device efficiency and stability.
labsmax/nm (10ꢁ4emax/Mꢁ1 cmꢁ1 a
)
538 (4.39)
Eox1/2; Ered1/2/Vb
HOMO, LUMO/eVc
EgO,d EgE e/eV
Tmf, Tdecompg/1C
a
1.13; ꢁ1.29, ꢁ1.75
ꢁ5.17, ꢁ3.15
1.89, 2.02
258, 424
b
Measured in CHCl3. Half wave potential referred to Ag quasi-
c
d
reference electrode. Calculated from onset potentials. Optical en-
ergy gap estimated from the absorption edge of polymer solutions in
e
f
Notes and references
CHCl3. Energy gap = HOMO ꢁ LUMO. Determined by DSC
from 2nd heating after cooling with a rate of 10 1C minꢁ1 under
N2. 1 wt% Loss temperature, determined by TGA with a heating
1 (a) N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl,
Science, 1992, 258, 1474; (b) G. Yu, J. Gao, C. J. Hummelen, F.
Wudl and A. J. Heeger, Science, 1995, 270, 1789; (c) C. J. Brabec,
N. S. Sariciftci and C. J. Hummelen, Adv. Funct. Mater., 2001, 11,
15; (d) K. M. Coakley and M. D. McGehee, Chem. Mater., 2004,
16, 4533; (e) H. Spanggaard and F. C. Krebs, Sol. Energy Mater.
Sol. Cells, 2004, 83, 125; (f) H. Hoppe and N. S. Sariciftci,
J. Mater. Chem., 2006, 16, 45; (g) R. A. J. Janssen, J. C. Hummelen
and N. S. Sariciftci, MRS Bull., 2005, 30, 33; (h) S. E. Shaheen, D.
S. Ginley and G. E. Jabour, MRS Bull., 2005, 30, 1; (i) S. Gunes,
H. Neugebauer and N. S. Sariciftci, Chem. Rev., 2007, 107, 1324;
(j) M. T. Lloyd, J. E. Anthony and G. G. Malliaras, Mater. Today,
2007, 10(11), 34; (k) M. Jørgensen, K. Norrman and F. C. Krebs,
Sol. Energy Mater. Sol. Cells, 2008, 92, 686.
g
rate of 10 1C minꢁ1 under N2.
2 (a) Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook
and J. R. Durrant, Appl. Phys. Lett., 2005, 86, 63502; (b) W. Ma,
C. Yang, X. Gong, K. Lee and A. J. Heeger, Adv. Funct. Mater.,
2005, 15, 1617; (c) G. Li, V. Shrotriya, J. Huang, Y. Yao, T.
Moriarty, K. Emery and Y. Yang, Nat. Mater., 2005, 4, 826; (d) Y.
Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R.
Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C. S. Ha and
M. Ree, Nat. Mater., 2006, 5, 197; (e) J. Peet, J. Y. kim, N. E.
Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nat.
Mater., 2007, 6, 497; (f) J. Y. Kim, K. Lee, N. E. Coates, D. Moses,
T.-Q. Nguyen, M. Dante and A. J. Heeger, Science, 2007, 317, 222.
3 Review articles for low band gap polymers: (a) C. Winder and N.
S. Sariciftci, J. Mater. Chem., 2004, 14, 1077; (b) E. Bundgaard and
F. C. Krebs, Sol. Mater. Energy Sol. Cells, 2007, 91, 954.
4 (a) D. Mulbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R.
Gaudiana and C. Brabec, Adv. Mater., 2006, 18, 2884; (b) K.
Schulze, C. Uhrich, R. Schuppel, K. Leo, M. Pfeiffer, E. Brier, E.
Reinold and P. Bauerle, Adv. Mater., 2006, 18, 2872; (c) S. Roquet,
A. Cravino, P. Leriche, O. Aleveque, P. Frere and J. Roncali,
J. Am. Chem. Soc., 2006, 128, 3459; (d) N. Blouin, A. Michaud, D.
Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G.
Durocher, Y. Tao and M. Leclerc, J. Am. Chem. Soc., 2008, 130,
732.
5 (a) M. M. Payne, S. R. Parkin, J. E. Anthony, C.-C. Kuo and T. N.
Jackson, J. Am. Chem. Soc., 2005, 127, 4986; (b) S. T. Bromley, M.
Mas-Torrent, P. Hadley and C. Rovira, J. Am. Chem. Soc., 2004,
126, 6544; (c) I. Mcculloch, M. Heeney, C. Bailey, K. Genevicius, I.
Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W.
Zhang, M. Chabinyc, R. Kline, M. McGehee and M. Toney, Nat.
Mater., 2006, 5, 328.
6 (a) Y. Li, Y. Wu, S. Gardner and B. S. Ong, Adv. Mater., 2005, 17,
849; (b) P.-L. T. Boudreault, S. Wakim, N. Blouin, M. Simard, C.
Tessier, Y. Tao and M. Leclerc, J. Am. Chem. Soc., 2007, 129,
9125; (c) S. Wakim, J. Bouchard, M. Simard, N. Drolet, Y. Tao
and M. Leclerc, Chem. Mater., 2004, 16, 4386.
Fig. 3 Cyclic voltammograms of P(InCzTh2BTD) and P3HT thin films
on Pt electrode in 0.1 M Bu4NPF6 acetonitrile solution at 50 mV minꢁ1
.
The potential of this polymer to be used as a hole-transport-
ing light-absorbing component in photovoltaic cells were ex-
plored. Bulk heterojunction PV cells with a device structure of
ITO|PEDOT-PSS|P(InCzTh2BTD) : PC61BM (1 : 2 w/w)|LiF
(1 nm)|Al (100 nm) were fabricated using a slow solvent
evaporation process.2c Fig. 4 shows the current–voltage char-
acteristics of the fabricated PV cells in the dark and under the
AM 1.5 simulated solar illumination at irradiation intensity of
100 mW cmꢁ2. These PV cells gave relatively larger Voc than
P3HT based devices (0.60 V), which are attributed to the high
oxidation potential of P(InCzTh2BTD). These devices also
exhibited low series resistance (B10.3 O cm2), implying higher
charge mobility, being related to the higher crystallization
tendency of the polymer as shown in Fig. 2. As a result,
7 Q. Hou, Q. Zhou, Y. Zhang, W. Yang, R. Yang and Y. Cao,
Macromolecules, 2004, 37, 6299.
8 (a) L. N. Yudina and J. Bergman, Tetrahedron, 2003, 59, 1265; (b)
N. Blouin, M. Leclerc, B. Vercelli, S. Zecchin and G. Zotti,
Macromol. Chem. Phys., 2006, 207, 175.
9 P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C.
M. Ramsdale, H. Sirringhaus and R. H. Friend, Phys. Rev. B:
Condens. Matter. Mater. Phys., 2003, 67, 642031.
10 T. Swager, Nat. Mater., 2002, 1, 151.
11 (a) S. Malik and A. K. Nandi, J. Polym. Sci. Part B: Polym. Phys.,
2002, 40, 2073; (b) H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y.
Ryu and Z. Bao, Adv. Funct. Mater., 2005, 15, 671.
12 J. Lu, P. Xia, P. Lo, Y. Tao and M. Wong, Chem. Mater., 2006, 18,
6194.
Fig. 4 Current density–voltage characteristics of the P(InCzTh2BTD)
based devices under AM 1.5 simulated solar illumination of 100 mW cmꢁ2
.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 5315–5317 | 5317