Communications
butyric acid had apparently diffused into the fat-rich egg yolk,
thereby separating the two parts of the probe.
Keywords: bioorganic chemistry · fluorescent probes ·
FRET (fluorescence resonance energy transfer) · phospholipids ·
signal transduction
.
It remains to be established which isoform of PLA2 is
responsible for the cleavage reaction, both in cultured cells
and in fish embryos. In vitro experiments with isolated
recombinant cPLA2 a showed no cleavage of 7. Overexpres-
sion of cPLA2 a and g also failed to increase the cleavage of
the probe. All experiments performed so far hint towards
PAF-AHII as the responsible enzyme for cleavage of 7 in
HeLa cells. This result is in accordance with recent data from
C. elegans, which show that PAF-AHII is essential for
epithelial morphogenesis.[28] Only future experiments with
purified enzyme can prove hydrolysis of 7 with PAF-AHII.
In conclusion, the PLA2 probe 1 is highly membrane
permeant and accumulates close to the intracellular region of
PLA2 activity. The probe was demonstrated to be useful in
monitoring enzyme activities in cultured cells and small
organisms and there is much potential for the probe to be
used in living-cell high-throughput screening experiments for
PLA2 inhibitors. Small-molecule FRET probes generated by
preparative organic chemistry usually exhibit much larger
ratio changes than genetically encoded FRET probes. There-
fore, this technology should generally be explored more
extensively in the future, especially when the probes are
membrane permeant and therefore suitable for the treatment
of large cell populations.
[1] J. Zhang, R. E. Campbell, A. Y. Ting, R. Y. Tsien, Nat. Rev. Mol.
Cell Biol. 2002, 3, 906 – 918.
[2] F. S. Wouters, P. J. Verveer, P. I. H. Bastiaens, Trends Cell Biol.
2001, 11, 203 – 211.
[3] A. Miyawaki, A. Sawano, T. Kogure, Nat. Cell Biol. 2003, 5, S1 –
S7.
[4] N. Johnsson, K. Johnsson, ChemBioChem 2003, 4, 803 – 810.
[5] G. Zlokarnik, P. A. Negulescu, T. E. Knapp, L. Mere, N. Burres,
L. X. Feng, M. Whitney, K. Rꢀmer, R. Y. Tsien, Science 1998,
279, 84 – 88.
[6] H. S. Hendrickson, Anal. Biochem. 1994, 219, 1 – 8.
[7] H. S. Hendrickson, E. K. Hendrickson, I. D. Johnson, S. A.
Farber, Anal. Biochem. 1999, 276, 27 – 35.
[8] I. Kudo, M. Murakami, Prostaglandins Other Lipid Mediators
2002, 68–69, 383 – 399.
[9] C. D. Funk, Science 2001, 294, 1871 – 1875.
[10] S. Das, W. Cho, J. Biol. Chem. 2002, 277, 23838 – 23846.
[11] S. Grewal, S. Ponnambalam, J. H. Walker, J. Cell Sci. 2003, 116,
2303 – 2310.
[12] J. H. Evans, D. M. Spencer, A. Zweifach, C. C. Leslie, J. Biol.
Chem. 2001, 276, 30150 – 30160.
[13] S. Benzaria, H. Pelicano, R. Johnson, G. Maury, J. L. Imbach,
A. M. Aubertin, G. Obert, G. Gosselin, J. Med. Chem. 1996, 39,
4958 – 4965.
[14] M. S. J. Briggs, I. Bruce, J. N. Miller, C. J. Moody, A. C.
Simmonds, E. Swann, Chem. Soc. Perkin Trans. 1 1997, 1051 –
1058.
[15] S. A. Farber, E. S. Olson, J. D. Clark, M. E. Halpern, J. Biol.
Chem. 1999, 274, 19338.
[16] O. Wichmann, C. Schultz, Chem. Commun. 2001, 2500 – 2501.
[17] M. Shafiee, S. Deferme, A. L. Villard, D. Egron, G. Gosselin,
J. L. Imbach, T. Lioux, A. Pompon, S. Varray, A. M. Aubertin, G.
Van den Mooter, R. Kinget, C. Perigaud, P. Augustijns, J. Pharm.
Sci. 2001, 90, 448 – 463.
[18] C. Dinkel, O. Wichmann, C. Schultz, Tetrahedron Lett. 2003, 44,
1153 – 1155.
[19] C. Schultz, Bioorg. Med. Chem. 2003, 11, 885 – 898.
[20] Y. A. Hannun, C. R. Loomis, R. M. Bell, J. Biol. Chem. 1985,
260, 10039 – 10043.
Experimental Section
1
3
1: H NMR (400 MHz, CDCl3, 258C, TMS): d = 8.48 (d, J = 8.6 Hz,
1H; NBD-H), 8.25 (d, 3J = 8.8 Hz, 1H; Nile red H4), 8.06 (d, 4J =
2.5 Hz, 1H; Nile red H1), 7.62 (d, 3J = 9.1 Hz, 1H; Nile red H11), 7.19
3
4
3
(dd, J = 8.6 Hz, J = 2.5 Hz, 1H; Nile red H3), 6.70 (dd, J = 9.1 Hz,
4J = 2.5 Hz, 1H; Nile red H10), 6.48 (d, 4J = 2.5 Hz, 1H; Nile red H8),
6.35 (s, 1H; Nile red H6), 6.16 (d, J = 8.3 Hz, 1H; NBD-H), 5.53 (t,
3
3J = 4.5 Hz, 0.5H; NH carbamate), 5.48 (t, 3J = 4.5 Hz, 0.5H; NH
carbamate), 5.30–5.20 (m, 1H; sn-2 CH), 4.37–4.10 (m, 12H; Nile red
OCH2, POCH2 (3 ), NHCOOCH2), 3.61 (d, 3J = 5.1 Hz, 1H; sn-1
CH2), 3.56–3.40 (m, 10H; sn-1 OCH2, NBD-NH-CH2, Nile red NCH2
(2 ), OOCNHCH2), 3.20 (t, 2.67 , 3J = 6.3 Hz, 2H; COSCH2), 3.15 (t,
3J = 6.4 Hz, 2H; COSCH2), 2.69 (t, 3J = 7.2 Hz, 2H OOCCH2), 2.38 (s,
3H; CH3COS), 2.37 (s, 3H; CH3COS), 2.26 (qi, 3J = 6.7 Hz, 2H; Nile
red O-CH2CH2), 1.79 (qi, 3J = 7.2 Hz, 2H; NBDNH-CH2CH2), 1.60–
1.19 ppm (m, 26H; Nile red NCH2CH3 (2 ), CH2 chain (10 ));
13C NMR (100 MHz, CDCl3, 258C): d = 183.2, 161.5, 152.1, 150.9,
146.9, 136.5, 134.1, 131.1, 130.9, 128.8, 127.8, 125.7, 124.7, 118.2, 109.7,
106.6, 105.2, 96.3, 71.8, 71.0, 68.3, 67.0, 66.3, 66.2, 63.4, 45.1, 44.1, 41.4,
38.7, 31.9, 30.8, 30.6, 30.4, 29.7, 29.5, 29.4, 29.4, 29.3, 29.2, 29.1, 28.9,
28.5, 28.3, 26.9, 26.0, 12.6 ppm; 31P NMR (162 MHz, CDCl3, 258C,
H3PO4): d = ꢀ1.1 ppm; HR FAB MS (NBA, positive mode): [M+H+]
calculated: 1212.4398; [M+H+] found: 1212.4366.
[21] H. Du, R. C. A. Fuh, J. Z. Li, L. A. Corkan, J. S. Lindsey,
Photochem. Photobiol. 1998, 68, 141 – 142.
[22] A. Matsuzawa, K. Hattori, J. Aoki, H. Arai, K. Inoue, J. Biol.
Chem. 1997, 272, 32315 – 32320.
[23] K. Asai, T. Hirabayashi, T. Houjou, N. Uozumi, R. Taguchi, T.
Shimizu, J. Biol. Chem. 2003, 278, 8809 – 8814.
[24] J. Balsinde, E. A. Dennis, J. Biol. Chem. 1996, 271, 6758 – 6765.
[25] J. Balsinde, I. D. Bianco, E. J. Ackermann, K. Condefrieboes,
E. A. Dennis, Proc. Natl. Acad. Sci. USA 1995, 92, 8527 – 8531.
[26] M. A. Balboa, I. Varela-Nieto, K. K. Lucas, E. A. Dennis, FEBS
Lett. 2002, 531, 12 – 17.
[27] S. A. Farber, M. Pack, S. Y. Ho, L. D. Johnson, D. S. Wagner, R.
Dosch, M. C. Mullins, H. S. Hendrickson, E. K. Hendrickson,
M. E. Halpern, Science 2001, 292, 1385 – 1388.
[28] T. Inoue, A. Sugimoto, Y. Suzuki, M. Yamamoto, M. Tsujimoto,
K. Inoue, J. Aoki, H. Arai, Proc. Natl. Acad. Sci. USA 2004, 101,
13233 – 13238.
Received: February 28, 2005
Revised: July 9, 2005
Published online: December 2, 2005
[29] C. Dinkel, C. Schultz, unpublished results.
512
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 508 –512