Angewandte
Chemie
Keywords: benzylic organometallic compounds ·
.
cross-coupling · fragmentation · Grignard reaction ·
organocopper compounds
[1] a) T. R. van den Ancker, C. L. Raston, Organometallics 1995, 14,
584; b) T. Alonso, S. Harvey, P. C. Junk, C. L. Raston, B. Skelton,
A. H. White, Organometallics 1987, 6, 2110; c) H. Appler, L. W.
Gross, B. Mayer, W. P. Neumann, J. Organomet. Chem. 1985,
291, 9; d) J. Scholz, K.-H. Thiele, J. Organomet. Chem. 1986, 314,
7; e) R. D. Rieke, Acc. Chem. Res. 1977, 10, 301; f) S. Harvey,
C. L. Raston, J. Chem. Soc. Chem. Commun. 1988, 652; g) L. M.
Engelhardt, S. Harvey, C. L. Raston, A. H. White, J. Organomet.
Chem. 1988, 341, 39; h) T. M. Nicoletti, C. L. Raston, M. V.
Sargent, J. Chem. Soc. Chem. Commun. 1990, 133; i) H. J. R.
de Boer, O. S. Akkerman, F. Bickelhaupt, J. Organomet. Chem.
1987, 321, 291; j) T. R. van den Ancker, S. Harvey, C. L. Raston,
J. Organomet. Chem. 1995, 502, 35; k) S. Harvey, P. C. Junk, C. L.
Raston, G. Salem, J. Org. Chem. 1988, 53, 3134.
[2] The sulfoxide–magnesium exchange reaction is well known and
especially useful for the preparation of new magnesium carbe-
noids; see: a) T. Satoh, K. Horiguchi, Tetrahedron Lett. 1995, 36,
8235; b) T. Satoh, T. Oohara, Y. Ueda, K. Yamakawa, J. Org.
Chem. 1989, 54, 3130; c) T. Satoh, K. Takano, H. Ota, H.
Someya, K. Matsuda, M. Koyama, Tetrahedron 1998, 54, 5557;
d) R. W. Hoffmann, P. G. Nell, Angew. Chem. 1999, 111, 354;
Angew. Chem. Int. Ed. 1999, 38, 338; e) R. W. Hoffmann, B.
Hꢀlzer, O. Knopff, K. Harms, Angew. Chem. 2000, 112, 3206;
Angew. Chem. Int. Ed. 2000, 39, 3072; f) R. W. Hoffmann, B.
Hꢀlzer, O. Knopff, Org. Lett. 2001, 3, 1945; g) R. W. Hoffmann,
Chem. Soc. Rev. 2003, 32, 225; h) V. Schulze, P. G. Nell, A.
Burton, R. W. Hoffmann, J. Org. Chem. 2003, 68, 4546; i) B.
Hꢀlzer, R. W. Hoffmann, Chem. Commun. 2003, 732.
[3] For a related reductive sulfur–magnesium exchange reaction
that generates allylic magnesium reagents, see: D. Cheng, S. Zhu,
Z. Yu, T. Cohen, J. Am. Chem. Soc. 2001, 123, 30.
[4] Related compounds of this class were used for the rapid and mild
generation of various carbon radicals: a) T. Ooi, M. Furuya, D.
Sakai, J. Hokke, K. Maruoka, Synlett 2001, 541; b) T. Ooi, D.
Sakai, M. Takada, N. Komatsu, K. Maruoka, Synlett 2001, 791;
c) T. Ooi, M. Furuya, D. Sakai, K. Maruoka, Adv. Synth. Catal.
2001, 343, 166.
[5] W. Neugebauer, A. J. Kos, P. v. R. Schleyer, J. Organomet. Chem.
1982, 228, 107.
[6] The use of 2,2’-dibromobiphenyl instead of 4 is unfortunately not
possible, although the corresponding bromo derivatives 1 can be
prepared (see Supporting Information). The Br/Mg exchange
does not occur to a significant extent under the typical reaction
conditions.
[7] K. Fujiki, N. Tanifuji, Y. Sasaki, T. Yokoyama, Synthesis 2002,
343.
[8] D. Scholz, Liebigs Ann. Chem. 1984, 259.
[9] P. G. Theobald, W. H. Okamura, J. Org. Chem. 1990, 55, 741.
[10] Lithium chloride also promotes the sulfur–magnesium exchange
reaction. For the activation of magnesium derivatives with LiCl,
see: A. Krasovskiy, P. Knochel, Angew. Chem. 2004, 116, 3396;
Angew. Chem. Int. Ed. 2004, 43, 3333.
[11] P. Knochel, M. C. P. Yeh, S. C. Berk, J. Talbert, J. Org. Chem.
1988, 53, 2390.
Angew. Chem. Int. Ed. 2006, 45, 606 –609
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
609