J. Zhu et al.
aqueous phase was extracted with CH2Cl2. The combined organic extracts
were washed with brine, dried over anhydrous Na2SO4, and evaporated
to dryness under reduced pressure. The crude residue was subjected to
flash chromatography (silica gel, heptane/EtOAc 4/1!heptane/EtOAc
1:1)to give compound 5a (1.3 g, 96%)as a white solid. M.p. 104–106 8C;
Rf (EtOAc/heptane 1:5) = 0.17; [a]D =ꢀ8 (c=0.12, CHCl3); 1H NMR
(300 MHz, CDCl3, ppm), two rotamers (4:1): d=3.08 (3.02)(s, 3H), 3.15
(dd, 1H, J=8.7, 14.0 Hz), 3.28 (dd, 1H, J=5.3, 14.0 Hz), 3.76 (s, 3H),
4.02 (3.90)(d, 1H, J=17.3 (17.2)Hz), 4.26 (4.09) (d, 1H, J=17.3
(17.2)Hz), 4.62 (4.39)(dd, 1H, J=5.3 (5.5), 8.7 (8.8) Hz), 7.20–7.36 (5H,
m); 13C NMR (62.5 MHz, CDCl3, ppm), two rotamers (4:1): d=36.7
(35.9), 38.6 (39.0), 50.1 (51.2), 52.4 (52.8), 55.8, 127.7, 128.8 (2C), 129.5
(2C), 135.2, 160.0, 165.8, 168.9; IR (CHCl3): n˜ =3009, 2142, 1751, 1677,
1497, 1456, 1439, 1407, 1366, 1238, 1183, 1121, 1080, 1032 cmꢀ1; MS (EI):
m/z: 260 [M]+, 233; elemental analysis (%)calcd for C 14H16N2O3: C
64.62, H 6.15, N 10.77; found: C 64.77, H 6.07, N 10.74.
diluted): m/z: 460 [M+H]+; HRMS: m/z: calcd for C26H41N3O4 +H:
460.3176; found: 460.3192.
Compound 2t: Cyclization of 6t was performed under identical condi-
tions as described for 1a. The light yellow residue was subjected to purifi-
cation by preparative TLC (CH2Cl2/MeOH 1:1)to give 2t (isomer A,
69 mg)and 2t’ (isomer B, 68 mg)(78% total.) Isomer A: White solid;
yield 39%; 1H NMR (300 MHz, CDCl3, ppm), two rotamers: d=1.20–
1.80 (m, 6H), 2.14–2.48 (m, 4H), 2.76 (dd, 1H, J=4.0 Hz, 11.1 Hz), 3.00
(2.86) (s, 3H), 2.87–3.10 (m, 2H), 3.23 (d, 1H, J=16,9 Hz), 3.55–3.67 (m,
4H), 3.71–3.80 (m, 1H), 4.16–4.20 (4.05–4.10) (m, 1H), 4.64 (4.42) (d,
1H, J=16.9 (18.7 Hz)), 5.16 (5.41) (m, 1H), 6.71 (6.80) (d, 1H, J=9.8
(6.8 Hz)), 7.16–7.30 (m, 5H); 13C NMR (CDCl3, 75 MHz, ppm): d=26.5,
27.8, 28.1, 37.9, 38.5, 49.0, 51.0, 51.2, 63.8, 67.3, 69.9, 127.2, 128.9 (2C),
129.6 (2C), 136.6, 168.5, 171.3, 173.4; IR (CHCl3): n˜ =1505, 1648, 1673,
1739, 3016, 3372 cmꢀ1; MS (IE): m/z: 417 [M]+.
Isomer B: White solid; yield 39%; 1H NMR (300 MHz, CDCl3, ppm),
two rotamers: d=1.12–1.80 (m, 6H), 2.06–2.14 (m, 2H), 2.24–2.38 (m,
2H), 2.57–2.62 (m, 1H), 2.9–3.01 (m, 2H), 3.11 (s, 3H), 3.24 (d, 1H, J=
15,6 Hz), 3.47–3.60 (m, 4H), 4.01–4.06 (m, 2H), 4.58 (d, 1H, J=15.6 Hz),
5.38 (5.06)(m,1H), 7.09–7.19 (m, 5H); 13C NMR (CDCl3, 75 MHz, ppm):
d = 27.8, 28.4, 29.6, 38.1, 38.3, 48.1, 51.9, 52.4, 54.1, 67.2, 67.6, 69.8,
127.2, 128.9, 129.6, 136.7, 168.7, 173.0, 173.0%; IR (CHCl3): n˜ =3372,
3016, 1739, 1673, 1648, 1505 cmꢀ1; MS (IE): m/z: 417 [M]+; MS (ESI,
positive mode): m/z: 440.2 [M+H]+; HRMS: m/z: calcd for
C22H31N3O5 +Na: 440.21.61; found: 440.2161.
General procedure for three-component synthesis of oxazole 6: A solu-
tion of heptanal (3a, 23 mg, 0.2 mmol)and aminohexanol ( 4a; 23 mg,
0.2 mmol)in dry methanol (2 mL)was stirred at room temperature for
15 min, and isocyanide 5a (52 mg, 0.2 mmol)was then added to the solu-
tion. The reaction mixture was heated to 708C for 3 h. The solvent was
then removed under reduced pressure. The crude product was purified
by flash column chromatography (silica gel, CH2Cl2/MeOH 95:5)to give
aminooxazole 6a (56.0 mg, 59%)as a yellow oil. Rf (MeOH/CH2Cl2
1:20)
=
0.28; 1H NMR (250 MHz, CDCl3, ppm): d=0.86 (t, 3H, J=
6.6 Hz), 1.13–1.60 (m, 16H), 1.68–1.84 (m, 2H), 2.48 (t, 2H, J=7.9 Hz),
2.87 (s, 3H), 3.59 (t, 2H, J=6.5 Hz), 3.65 (t, 1H, J=6.1 Hz), 3.68 (s, 3H),
3.71 (s, 2H), 3.85 (s, 2H), 7.15–7.27 (m, 5H); 13C NMR (CDCl3,
62.5 MHz, ppm): d=14.0, 22.5, 25.6, 25.9, 27.0, 29.0, 29.9, 31.6, 32.6, 34.5,
40.8, 47.5, 51.8, 55.9, 57.0, 62.5, 62.5, 122.1, 126.0, 128.3 (4C), 139.8, 151.4,
159.9, 170.6; IR (CHCl3): n˜ =3690, 3013, 2933, 1749, 1675, 1602, 1456,
Acknowledgement
Financial support from Rhodia and CNRS are gratefully acknowledged.
C.B. thanks the Ministre de lꢁEnseignement SupØrieur et de la Recher-
che for a doctoral fellowship. G.Z. thanks Rhodia for a postdoctoral fel-
lowship.
1406, 1265, 1223, 1183, 1012 cmꢀ1
;
MS (EI): m/z: 473 [M]+, 388
[MꢀC6H13]+.
General procedure for macrocyclization: A solution of 5-aminooxazole
6a (43 mg, 0.09 mmol)and LiOH·H 2O (42 mg, 0.10 mmol)in THF/H 2O
(4 mL, 3:1)was stirred at room temperature for 3 h and evaporated to
dryness in vacuo. The residue obtained was dissolved in MeCN (200 mL,
c=10ꢀ3 m), and TFA (405 mg, 9.20 mmol) was added under a stream of
argon. The reaction mixture was stirred at room temperature for 2 h.
When the reaction was completed, the volatile substances were evaporat-
ed under reduced pressure. The residue obtained was dissolved in ethyl
acetate and washed with a saturated aqueous solution of potassium bicar-
bonate. The organic phase was dried over anhydrous Na2SO4, filtered,
and evaporated to dryness under reduced pressure. The light yellow resi-
due was subjected to purification by preparative TLC (heptane/EtOAc
1:1)to give 1a (isomer A, 18 mg)and compound 1a’ (isomer B, 17 mg)
(85%, total 35%). Isomer A: white solid; yield 43%; Rf (EtOAc/heptane
1.5:1) = 0.39; 1H NMR (300 MHz, CDCl3, ppm): d=0.89 (t, 3H, J=
6.6 Hz), 1.15–1.70 (m, 19H), 2.46–2.56 (m, 2H), 2.75 (s, 3H), 2.97–3.10
(m, 3H), 3.17 (d, 1H, J=16.5 Hz), 3.88 (m, 1H), 4.47 (m, 1H), 4.51 (d,
1H, J=16.5 Hz), 5.15 (dt, 1H, J=4.7, 8.0 Hz), 7.23–7.27 (m, 5H), 7.86
(d, 1H, J=8.0 Hz, NH); 13C NMR (CDCl3, 75 MHz, ppm): d=14.2, 22.7,
25.1, 25.2, 26.1, 28.9, 29.2, 29.3, 31.7, 34.5, 36.9, 40.0, 47.8, 50.0, 51.7, 64.8,
65.2, 127.0, 128.4 (2C), 129.6 (2C), 136.6, 169.0, 171.7, 174.7; IR (CHCl3):
n˜ =3355, 3005, 2932, 2858, 1734, 1645, 1496, 1456, 1418, 1267, 1189,
1131 cmꢀ1; MS (EI): m/z: 459 [M]+; MS (APCI, diluted): m/z: 460
[M+H]+; HRMS: m/z: calcd for C26H41N3O4 +H: 460.3176; found:
460.3189.
[1] a)F. Sarabia, S. Chammaa, A. S. Ruiz, L. M. Oritz, F. J. L. Herrera,
Curr. Med. Chem. 2004, 11, 1309–1332; b)C. E. Ballard, H. Yu, B.
Wang, Curr. Med. Chem. 2002, 9, 471–498; c)Y. Q. Tang, J. Yuan,
G. Osapay, K. Osapay, D. Tran, C. J. Miller, A. J. Quellete, M. E.
Selsted, Science 1999, 286, 498–502; d)N. Fusetani, S. Matsunaga,
Chem. Rev. 1993, 93, 1793–1806.
[2] a)H. Kessler, Angew. Chem. 1982, 94, 509–520; Angew. Chem. Int.
Ed. Engl. 1982, 21, 512–523; b)C. Toniolo, Int. J. Peptide Protein
Res. 1990, 35, 287–300.
[3] a)D. P. Fairlie, G. Abbenante, D. R. March, Curr. Med. Chem. 1995,
2, 654–686; b)L. A. Wessjohann, E. Ruijter, Top. Curr. Chem. 2005,
243, 137–184.
[4] a)D. F. Verber, R. M. Freidinger, Trends Neurosci. 1985, 8, 392–
396; b)E. Milner-White, J. Trends Pharmacol. Sci. 1989, 10, 70–74;
c)J. S. Davies, J. Pept. Sci. 2003, 9, 471–501.
[5] K. Burgess, Acc. Chem. Res. 2001, 34, 826–835.
[6] a)J. M. Humphrey, A. R. Chamberlin, Chem. Rev. 1997, 97, 2243–
2266; b)F. Albericio, R. Chinchilla, D. J. Dodsworth, C. Najera,
Org. Prep. Proc. Int. 2001, 33, 203–303.
[7] For recent reviews, see a)P. Li, P. Roller, J. Xu, Curr. Org. Chem.
2002, 6, 411–440; b)J. N. Lambert, J. P. Mitchell, K. D. Roberts, J.
Chem. Soc. Perkin Trans. 1 2001, 471–484; c)P. Wipf, Chem. Rev.
1995, 95, 2115–2134.
Isomer B: White solid; yield 41%; Rf (EtOAc/heptane 1.5:1) = 0.12;
1H NMR (300 MHz, CDCl3, ppm): d=0.88 (t, 3H, J=6.8 Hz), 1.16–1.54
(m, 19H), 2.36–2.54 (m, 2H), 2.90 (s, 3H), 2.91–3.10 (m, 3H), 3.20 (d,
1H, J=16.7 Hz), 4.00 (dt, 1H, J=4.0 Hz, 10.9 Hz), 4.32 (dt, 1H, J=
5.6 Hz, 10.9 Hz), 4.77 (d, 1H, J=16.7 Hz), 5.27 (m, 1H), 6.78 (d, 1H, J=
8.6 Hz, NH), 7.19–7.31 (m, 5H); 13C NMR (CDCl3, 75 MHz, ppm): d=
14.2, 22.7, 24.5, 25.3, 26.1, 28.0, 28.2, 29.3, 31.7, 32.9, 36.6, 39.4, 45.8, 49.9,
50.8, 62.8, 65.4, 127.2, 128.6, 128.7, 129.4 (2C), 136.2, 168.9, 171.2, 175.0;
IR (CHCl3): n˜ =3419, 3008, 2932, 2859, 1734, 1648, 1497, 1456, 1417,
1379, 1276, 1191, 1126, 1092 cmꢀ1; MS (EI): m/z: 459 [M]+; MS (APCI,
[8] F. Cavelier-Frontin, G. Ppe, J. Verducci, D. Siri, R. Jacquier, J. Am.
Chem. Soc. 1992, 114, 8885–8890.
[9] For recent solid-phase syntheses of cyclopeptides, see a)H. Mihara,
S. Yamabe, T. Niidome, H. Aoyagi, H. Kumagai, Tetrahedron Lett.
1995, 36, 4837–4840; b)A. F. Spatola, K. Darlak, P. Romanovskis,
Tetrahedron Lett. 1996, 37, 591–594; c)A. F. Spatola, Y. Crozet, D.
DeWitt, M. Yanagisawa, J. Med. Chem. 1996, 39, 3842–3846; d)K.
Burgess, D. Lim, M. Bois-Choussy, J. Zhu, Tetrahedron Lett. 1997,
38, 3345–3348; e)C. L. Lanter, J. W. Guiles, R. A. Rivero, Mol. Di-
versity 1999, 4, 149–153; f)H. K. J. Jensen, J. Alsina, M. F. Songster,
1182
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2006, 12, 1174 – 1184